One dimensional methods for the numerical solution of nonlinear hyperbolic systems

Author(s):  
A. R. Gourlay ◽  
G. McGuire ◽  
J.Ll. Morris
Author(s):  
А.В. Соловьев ◽  
А.В. Данилин

Разностная схема Диез повышенного порядка точности, ранее разработанная для решения скалярного одномерного уравнения переноса, с помощью балансно-характеристического подхода распространена на нелинейные системы уравнений мелкой воды и уравнений Эйлера. Для обеих систем уравнений решены тестовые задачи, иллюстрирующие особенности решений, полученных с помощью описываемой разностной схемы. The Sharp difference scheme of higher-order accuracy developed previously for solving the scalar one-dimensional transport equation is extended to the shallow water nonlinear systems and to the systems of Euler equations using the balance-characteristic approach. For these systems, a number of test problems are solved to illustrate the features of the solutions obtained by the described difference scheme.


2008 ◽  
Vol 47 (3) ◽  
pp. 1460-1498 ◽  
Author(s):  
Jean-Michel Coron ◽  
Georges Bastin ◽  
Brigitte d'Andréa-Novel

2008 ◽  
Vol 13 (1) ◽  
pp. 47-54 ◽  
Author(s):  
A. Krylovas

A method of averaging along characteristics of weakly nonlinear hyperbolic systems, which was presented in earlier works of the author for one dimensional waves, is generalized for some cases of multidimensional wave problems. In this work we consider such systems and discuss a way to use the internal averaging along characteristics for new problems of asymptotical integration.


2012 ◽  
Vol 44 (5) ◽  
pp. 3537-3563 ◽  
Author(s):  
Alberto Bressan ◽  
Feimin Huang ◽  
Yong Wang ◽  
Tong Yang

Sign in / Sign up

Export Citation Format

Share Document