Trigonometric polynomials and sums of squares

Author(s):  
A. Naftalevich ◽  
M. Schreiber
1988 ◽  
Vol 16 (7) ◽  
pp. 1373-1382
Author(s):  
M. Schreiber

2017 ◽  
Vol 13 (4) ◽  
pp. 106-116
Author(s):  
Alaa A. Auad ◽  
◽  
Mousa M. Khrajan

2008 ◽  
Vol 8 (2) ◽  
pp. 143-154 ◽  
Author(s):  
P. KARCZMAREK

AbstractIn this paper, Jacobi and trigonometric polynomials are used to con-struct the approximate solution of a singular integral equation with multiplicative Cauchy kernel in the half-plane.


2021 ◽  
Vol 107 ◽  
pp. 67-105
Author(s):  
Elisabeth Gaar ◽  
Daniel Krenn ◽  
Susan Margulies ◽  
Angelika Wiegele

2020 ◽  
Vol 70 (3) ◽  
pp. 599-604
Author(s):  
Şahsene Altinkaya

AbstractIn this present investigation, we will concern with the family of normalized analytic error function which is defined by$$\begin{array}{} \displaystyle E_{r}f(z)=\frac{\sqrt{\pi z}}{2}\text{er} f(\sqrt{z})=z+\overset{\infty }{\underset {n=2}{\sum }}\frac{(-1)^{n-1}}{(2n-1)(n-1)!}z^{n}. \end{array}$$By making the use of the trigonometric polynomials Un(p, q, eiθ) as well as the rule of subordination, we introduce several new classes that consist of 𝔮-starlike and 𝔮-convex error functions. Afterwards, we derive some coefficient inequalities for functions in these classes.


Author(s):  
Mareike Dressler ◽  
Adam Kurpisz ◽  
Timo de Wolff

AbstractVarious key problems from theoretical computer science can be expressed as polynomial optimization problems over the boolean hypercube. One particularly successful way to prove complexity bounds for these types of problems is based on sums of squares (SOS) as nonnegativity certificates. In this article, we initiate optimization problems over the boolean hypercube via a recent, alternative certificate called sums of nonnegative circuit polynomials (SONC). We show that key results for SOS-based certificates remain valid: First, for polynomials, which are nonnegative over the n-variate boolean hypercube with constraints of degree d there exists a SONC certificate of degree at most $$n+d$$ n + d . Second, if there exists a degree d SONC certificate for nonnegativity of a polynomial over the boolean hypercube, then there also exists a short degree d SONC certificate that includes at most $$n^{O(d)}$$ n O ( d ) nonnegative circuit polynomials. Moreover, we prove that, in opposite to SOS, the SONC cone is not closed under taking affine transformation of variables and that for SONC there does not exist an equivalent to Putinar’s Positivstellensatz for SOS. We discuss these results from both the algebraic and the optimization perspective.


Sign in / Sign up

Export Citation Format

Share Document