Sampling Theory, Signal Processing, and Data Analysis
Latest Publications


TOTAL DOCUMENTS

277
(FIVE YEARS 21)

H-INDEX

4
(FIVE YEARS 0)

Published By Springer Science And Business Media LLC

2730-5716, 2730-5724

Author(s):  
Daniel Potts ◽  
Manfred Tasche

AbstractIn this paper, we study the error behavior of the nonequispaced fast Fourier transform (NFFT). This approximate algorithm is mainly based on the convenient choice of a compactly supported window function. So far, various window functions have been used and new window functions have recently been proposed. We present novel error estimates for NFFT with compactly supported, continuous window functions and derive rules for convenient choice from the parameters involved in NFFT. The error constant of a window function depends mainly on the oversampling factor and the truncation parameter.


Author(s):  
Robert Beinert ◽  
Peter Jung ◽  
Gabriele Steidl ◽  
Tom Szollmann

AbstractIn this work we consider the problem of identification and reconstruction of doubly-dispersive channel operators which are given by finite linear combinations of time-frequency shifts. Such operators arise as time-varying linear systems for example in radar and wireless communications. In particular, for information transmission in highly non-stationary environments the channel needs to be estimated quickly with identification signals of short duration and for vehicular application simultaneous high-resolution radar is desired as well. We consider the time-continuous setting and prove an exact resampling reformulation of the involved channel operator when applied to a trigonometric polynomial as identifier in terms of sparse linear combinations of real-valued atoms. Motivated by recent works of Heckel et al. we present an exact approach for off-the-grid super-resolution which allows to perform the identification with realizable signals having compact support. Then we show how an alternating descent conditional gradient algorithm can be adapted to solve the reformulated problem. Numerical examples demonstrate the performance of this algorithm, in particular in comparison with a simple adaptive grid refinement strategy and an orthogonal matching pursuit algorithm.


Author(s):  
Moritz Moeller ◽  
Tino Ullrich

AbstractIn this paper we study $$L_2$$ L 2 -norm sampling discretization and sampling recovery of complex-valued functions in RKHS on $$D \subset \mathbb {R}^d$$ D ⊂ R d based on random function samples. We only assume the finite trace of the kernel (Hilbert–Schmidt embedding into $$L_2$$ L 2 ) and provide several concrete estimates with precise constants for the corresponding worst-case errors. In general, our analysis does not need any additional assumptions and also includes the case of non-Mercer kernels and also non-separable RKHS. The fail probability is controlled and decays polynomially in n, the number of samples. Under the mild additional assumption of separability we observe improved rates of convergence related to the decay of the singular values. Our main tool is a spectral norm concentration inequality for infinite complex random matrices with independent rows complementing earlier results by Rudelson, Mendelson, Pajor, Oliveira and Rauhut.


Author(s):  
Arya Bangun ◽  
Arash Behboodi ◽  
Rudolf Mathar

AbstractMany practical sampling patterns for function approximation on the rotation group utilizes regular samples on the parameter axes. In this paper, we analyze the mutual coherence for sensing matrices that correspond to a class of regular patterns to angular momentum analysis in quantum mechanics and provide simple lower bounds for it. The products of Wigner d-functions, which appear in coherence analysis, arise in angular momentum analysis in quantum mechanics. We first represent the product as a linear combination of a single Wigner d-function and angular momentum coefficients, otherwise known as the Wigner 3j symbols. Using combinatorial identities, we show that under certain conditions on the bandwidth and number of samples, the inner product of the columns of the sensing matrix at zero orders, which is equal to the inner product of two Legendre polynomials, dominates the mutual coherence term and fixes a lower bound for it. In other words, for a class of regular sampling patterns, we provide a lower bound for the inner product of the columns of the sensing matrix that can be analytically computed. We verify numerically our theoretical results and show that the lower bound for the mutual coherence is larger than Welch bound. Besides, we provide algorithms that can achieve the lower bound for spherical harmonics.


Sign in / Sign up

Export Citation Format

Share Document