Numerical methods for the Navier-Stokes equations with an unknown boundary between two viscous incompressible fluids

Author(s):  
Valeriy Ya. Rivkind
2015 ◽  
Vol 429 (2) ◽  
pp. 1059-1085 ◽  
Author(s):  
Alexander Khapalov ◽  
Piermarco Cannarsa ◽  
Fabio S. Priuli ◽  
Giuseppe Floridia

Geophysics ◽  
1988 ◽  
Vol 53 (4) ◽  
pp. 509-518 ◽  
Author(s):  
Daniel H. Rothman

Numerical models of fluid flow through porous media can be developed from either microscopic or macroscopic properties. The large‐scale viewpoint is perhaps the most prevalent. Darcy’s law relates the chief macroscopic parameters of interest—flow rate, permeability, viscosity, and pressure gradient—and may be invoked to solve for any of these parameters when the others are known. In practical situations, however, this solution may not be possible. Attention is then typically focused on the estimation of permeability, and numerous numerical methods based on knowledge of the microscopic pore‐space geometry have been proposed. Because the intrinsic inhomogeneity of porous media makes the application of proper boundary conditions difficult, microscopic flow calculations have typically been achieved with idealized arrays of geometrically simple pores, throats, and cracks. I propose here an attractive alternative which can freely and accurately model fluid flow in grossly irregular geometries. This new method solves the Navier‐Stokes equations numerically using the cellular‐automaton fluid model introduced by Frisch, Hasslacher, and Pomeau. The cellular‐ automaton fluid is extraordinarily simple—particles of unit mass traveling with unit velocity reside on a triangular lattice and obey elementary collision rules—but is capable of modeling much of the rich complexity of real fluid flow. Cellular‐automaton fluids are applicable to the study of porous media. In particular, numerical methods can be used to apply the appropriate boundary conditions, create a pressure gradient, and measure the permeability. Scale of the cellular‐automaton lattice is an important issue; the linear dimension of a void region must be approximately twice the mean free path of a lattice gas particle. Finally, an example of flow in a 2-D porous medium demonstrates not only the numerical solution of the Navier‐Stokes equations in a highly irregular geometry, but also numerical estimation of permeability and a verification of Darcy’s law.


2018 ◽  
Vol 7 (3) ◽  
pp. 77
Author(s):  
Mushtaq Ahmed ◽  
Waseem Ahmed Khan ◽  
S M. Shad Ahsen

This paper determines a class of exact solutions for plane steady motion of incompressible fluids of variable viscosity with body force term in the Navier-Stokes equations. The class consists of stream function  characterized by equation , in polar coordinates ,  where ,  and  are continuously differentiable functions, derivative of  is non-zero but double derivative of  is zero. We find exact solutions, for a suitable component of body force, considering two cases based on velocity profile. The first case fixes both the functions ,  and provides viscosity as function of temperature. Where as the second case fixes the function , leaves  arbitrary and provides viscosity and temperature for the arbitrary function . In both the cases, we can create infinite set of expressions for streamlines, viscosity function, generalized energy function and temperature distribution in the presence of body force.  


Sign in / Sign up

Export Citation Format

Share Document