Connecting of local operators and evolution equations on networks

Author(s):  
G. Lumer
2018 ◽  
Vol 21 (5) ◽  
pp. 1203-1237 ◽  
Author(s):  
Yana A. Butko

Abstract We consider operator semigroups generated by Feller processes killed upon leaving a given domain. These semigroups correspond to Cauchy–Dirichlet type initial-exterior value problems in this domain for a class of evolution equations with (possibly non-local) operators. The considered semigroups are approximated by means of the Chernoff theorem. For a class of killed Feller processes, the constructed Chernoff approximation leads to a representation of the solution of the corresponding Cauchy–Dirichlet type problem by a Feynman formula, i.e. by a limit of n-fold iterated integrals of certain functions as n → ∞. Feynman formulae can be used for direct calculations, modelling of underlying dynamics, simulation of underlying stochastic processes. Further, a method to approximate solutions of time-fractional evolution equations is suggested. The method is based on connections between time-fractional and time-non-fractional evolution equations as well as on Chernoff approximations for the latter ones. This method leads to Feynman formulae for solutions of time-fractional evolution equations. A class of distributed order time-fractional equations is considered; Feynman formulae for solutions of the corresponding Cauchy and Cauchy–Dirichlet type problems are obtained.


2008 ◽  
Author(s):  
Alexandru Alin Pogan

2004 ◽  
Vol 104 (2) ◽  
pp. 239-248
Author(s):  
J. Bračič

2015 ◽  
Vol 11 (3) ◽  
pp. 3134-3138 ◽  
Author(s):  
Mostafa Khater ◽  
Mahmoud A.E. Abdelrahman

In this work, an extended Jacobian elliptic function expansion method is pro-posed for constructing the exact solutions of nonlinear evolution equations. The validity and reliability of the method are tested by its applications to the Couple Boiti-Leon-Pempinelli System which plays an important role in mathematical physics.


Sign in / Sign up

Export Citation Format

Share Document