function expansion
Recently Published Documents


TOTAL DOCUMENTS

262
(FIVE YEARS 55)

H-INDEX

26
(FIVE YEARS 7)

MAUSAM ◽  
2021 ◽  
Vol 67 (3) ◽  
pp. 659-668
Author(s):  
AJIT DE ◽  
A. ROY ◽  
M. MITRA ◽  
R. K. BHATTACHARYA

The method of eigen function expansion has been used in the present study to compute synthetic or theoretical seismogram in layered elastic half-space of real earth model. Simple dislocation source model has been considered. The transverse (SH) or radial and vertical (P-SV) components of displacement field have been computed as summed modes and compared by using both exact and numerical techniques. The methods used in the study, include exact evaluation by propagator matrix approach using Reflection-Transmission coefficients as well as numerical computations using Runge-Kutta method of order 4. The specialty of the present study is to evaluate approximate displacement field for the earth models with homogeneous and / or inhomogeneous layers. The normalization technique has been used in the study to control the overflow errors. The study has an advantage to get an idea of earth structure or source model by an inverse iterative technique.  


2021 ◽  
Vol 2009 (1) ◽  
pp. 012078
Author(s):  
Jiang Yong ◽  
Wei Sisheng ◽  
Han Xinru ◽  
Ma Wenwen ◽  
Zhao Yuting ◽  
...  

2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Tomohisa Okazaki ◽  
Yukitoshi Fukahata ◽  
Takuya Nishimura

AbstractPresent day crustal displacement rates can be accurately observed at stations of global navigation satellite system (GNSS), and crustal deformation has been investigated by estimating strain-rate fields from discrete GNSS data. For this purpose, a modified least-square inversion method was proposed by Shen et al. (J Geophys Res 101:27957–27980, 1996). This method offers a simple formulation for simultaneously estimating smooth velocity and strain-rate fields from GNSS data, and it has contributed to clarify crustal deformation fields in many regions all over the world. However, we notice three theoretical points to be examined when we apply the method: mathematical inconsistency between estimated velocity and strain-rate fields, difficulty in objectively determining the optimal value of a hyperparameter that controls smoothness, and inappropriate estimation of uncertainty. In this study, we propose a method of basis function expansion with Akaike’s Bayesian information criterion (ABIC), which overcomes the above difficulties. Application of the two methods to GNSS data in Japan reveals that the inconsistency in the method of Shen et al. is generally insignificant, but could be clear in regions with sparser observation stations such as in islet areas. The method of basis function expansion with ABIC shows a significantly better performance than the method of Shen et al. in terms of the trade-off curve between the residual of fitting and the roughness of velocity field. The estimated strain-rate field with the basis function expansion clearly exhibits a low strain-rate zone in the forearc from the southern Tohoku district to central Japan. We also find that the Ou Backbone Range has several contractive spots around active volcanoes and that these locations well correspond to the subsidence areas detected by InSAR after the 2011 Tohoku-oki earthquake. Thus, the method of basis function expansion with ABIC would serve as an effective tool for estimating strain-rate fields from GNSS data.


2021 ◽  
pp. 173-188
Author(s):  
Zillur Rahman ◽  
M. Zulfikar Ali ◽  
Harun-Or-Roshid ◽  
Mohammad Safi Ullah

In this manuscript, the space-time fractional Equal-width (s-tfEW) and the space-time fractional Wazwaz-Benjamin-Bona-Mahony (s-tfWBBM) models have been investigated which are frequently arises in nonlinear optics, solid states, fluid mechanics and shallow water. Jacobi elliptic function expansion integral technique has been used to build more innovative exact solutions of the s-tfEW and s-tfWBBM nonlinear partial models. In this research, fractional beta-derivatives are applied to convert the partial models to ordinary models. Several types of solutions have been derived for the models and performed some new solitary wave phenomena. The derived solutions have been presented in the form of Jacobi elliptic functions initially. Persevering different conditions on a parameter, we have achieved hyperbolic and trigonometric functions solutions from the Jacobi elliptic function solutions. Besides the scientific derivation of the analytical findings, the results have been illustrated graphically for clear identification of the dynamical properties. It is noticeable that the integral scheme is simplest, conventional and convenient in handling many nonlinear models arising in applied mathematics and the applied physics to derive diverse structural precise solutions.


Author(s):  
Chien-Wen Hung

In the process of new product development, the customer's feeling is usually fuzzy phenomenon, how to evaluate various factors is to test the developer's intelligence, this study takes the new product development process as the research object, and applies the Quality Function expansion (QFD) method to establish a decision support system with fuzzy processing ability. In this study, the first development of quality function expansion (QFD) applied to Customer voice collection and analysis and conversion to product specifications. Then, the integration of fuzzy theory and the provision of different commodity development solutions as the best choice for products.


2021 ◽  
Author(s):  
Tomohisa Okazaki ◽  
Yukitoshi Fukahata ◽  
Takuya Nishimura

Abstract Present day crustal displacement rates can be accurately observed at stations of global navigation satellite system (GNSS), and crustal deformation has been investigated by estimating strain-rate fields from discrete GNSS data. The method proposed by Shen et al. (J Geophys Res 101:27957–27980, 1996) offers a simple formulation for simultaneously estimating smooth velocity and strain-rate fields, and it has contributed to clarify crustal deformation fields in many regions all over the world. However, in this paper, we point out three theoretical disadvantages of the method: mathematical inconsistency between estimated velocity and strain-rate fields, inability to objectively determine the optimal value of a hyperparameter that controls smoothness, and inaccurate estimation of uncertainty. As an alternative, we propose a method of basis function expansion with Akaike's Bayesian information criterion (ABIC), which overcomes the above difficulties. Application of the two methods to GNSS data in Japan reveals that the inconsistency in the method of Shen et al. is generally insignificant, but could be serious in regions with sparser observation stations such as in islet areas. More importantly, the method of basis function expansion with ABIC shows a significantly better performance than the method of Shen et al. in terms of the trade-off curve between the residual of fitting and the roughness of velocity field. The estimated strain-rate field with the basis function expansion clearly exhibits a low strain-rate zone in the forearc from the southern Tohoku district to central Japan. We also find that the Ou Backbone Range has several contractive spots around active volcanoes and that these locations well correspond to the subsidence areas detected by InSAR after the 2011 Tohoku-oki earthquake. Thus, the method of basis function expansion with ABIC would serve as an effective tool for estimating strain-rate fields from GNSS data.


Sign in / Sign up

Export Citation Format

Share Document