Existentially closed modules: Types and prime models

Author(s):  
Elisabeth Bouscaren
Keyword(s):  
1986 ◽  
Vol 100 (2) ◽  
pp. 281-301 ◽  
Author(s):  
Felix Leinen ◽  
Richard E. Phillips

Throughout, p will be a fixed prime, and will denote the class of all locally finite p-groups. For a fixed Abelian p-group A, we letwhere ζ(P) denotes the centre of P. Notice that A is not a class in the usual group-theoretic sense, since it is not closed under isomorphisms.


1985 ◽  
Vol 50 (3) ◽  
pp. 604-610
Author(s):  
Francoise Point

The starting point of this work was Saracino and Wood's description of the finitely generic abelian ordered groups [S-W].We generalize the result of Saracino and Wood to a class ∑UH of subdirect products of substructures of elements of a class ∑, which has some relationships with the discriminator variety V(∑t) generated by ∑. More precisely, let ∑ be an elementary class of L-algebras with theory T. Burris and Werner have shown that if ∑ has a model companion then the existentially closed models in the discriminator variety V(∑t) form an elementary class which they have axiomatized. In general it is not the case that the existentially closed elements of ∑UH form an elementary class. For instance, take for ∑ the class ∑0 of linearly ordered abelian groups (see [G-P]).We determine the finitely generic elements of ∑UH via the three following conditions on T:(1) There is an open L-formula which says in any element of ∑UH that the complement of equalizers do not overlap.(2) There is an existentially closed element of ∑UH which is an L-reduct of an element of V(∑t) and whose L-extensions respect the relationships between the complements of the equalizers.(3) For any models A, B of T, there exists a model C of TUH such that A and B embed in C.(Condition (3) is weaker then “T has the joint embedding property”. It is satisfied for example if every model of T has a one-element substructure. Condition (3) implies that ∑UH has the joint embedding property and therefore that the class of finitely generic elements of ∑UH is complete.)


2015 ◽  
pp. 1-24 ◽  
Author(s):  
Ilijas Farah ◽  
Isaac Goldbring ◽  
Bradd Hart ◽  
David Sherman
Keyword(s):  

1991 ◽  
pp. 353-362
Author(s):  
Otto H Kegel ◽  
Dieter Schmidt

Order ◽  
1986 ◽  
Vol 3 (2) ◽  
pp. 169-178 ◽  
Author(s):  
Michael H. Albert ◽  
Stanley N. Burris
Keyword(s):  

2018 ◽  
Vol 57 (3) ◽  
pp. 211-221 ◽  
Author(s):  
A. T. Nurtazin
Keyword(s):  

Author(s):  
Isaac Goldbring ◽  
Bradd Hart

Abstract We show that the following operator algebras have hyperarithmetic theory: the hyperfinite II$_1$ factor $\mathcal R$, $L(\varGamma )$ for $\varGamma $ a finitely generated group with solvable word problem, $C^*(\varGamma )$ for $\varGamma $ a finitely presented group, $C^*_\lambda (\varGamma )$ for $\varGamma $ a finitely generated group with solvable word problem, $C(2^\omega )$ and $C(\mathbb P)$ (where $\mathbb P$ is the pseudoarc). We also show that the Cuntz algebra $\mathcal O_2$ has a hyperarithmetic theory provided that the Kirchberg embedding problems have affirmative answers. Finally, we prove that if there is an existentially closed (e.c.) II$_1$ factor (resp. $\textrm{C}^*$-algebra) that does not have hyperarithmetic theory, then there are continuum many theories of e.c. II$_1$ factors (resp. e.c. $\textrm{C}^*$-algebras).


Sign in / Sign up

Export Citation Format

Share Document