Singularity formation for vortex sheets and hyperbolic equations

Author(s):  
Russel E. Caflisch

2003 ◽  
Vol 15 (1) ◽  
pp. 147-172 ◽  
Author(s):  
Thomas Y. Hou ◽  
Gang Hu ◽  
Pingwen Zhang


1999 ◽  
Vol 378 ◽  
pp. 233-267 ◽  
Author(s):  
STEPHEN J. COWLEY ◽  
GREG R. BAKER ◽  
SALEH TANVEER

Moore (1979) demonstrated that the cumulative influence of small nonlinear effects on the evolution of a slightly perturbed vortex sheet is such that a curvature singularity can develop at a large, but finite, time. By means of an analytical continuation of the problem into the complex spatial plane, we find a consistent asymptotic solution to the problem posed by Moore. Our solution includes the shape of the vortex sheet as the curvature singularity forms. Analytic results are confirmed by comparison with numerical solutions. Further, for a wide class of initial conditions (including perturbations of finite amplitude), we demonstrate that 3/2-power singularities can spontaneously form at t=0+ in the complex plane. We show that these singularities propagate around the complex plane. If two singularities collide on the real axis, then a point of infinite curvature develops on the vortex sheet. For such an occurrence we give an asymptotic description of the vortex-sheet shape at times close to singularity formation.



Games ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 23
Author(s):  
Alexander Arguchintsev ◽  
Vasilisa Poplevko

This paper deals with an optimal control problem for a linear system of first-order hyperbolic equations with a function on the right-hand side determined from controlled bilinear ordinary differential equations. These ordinary differential equations are linear with respect to state functions with controlled coefficients. Such problems arise in the simulation of some processes of chemical technology and population dynamics. Normally, general optimal control methods are used for these problems because of bilinear ordinary differential equations. In this paper, the problem is reduced to an optimal control problem for a system of ordinary differential equations. The reduction is based on non-classic exact increment formulas for the cost-functional. This treatment allows to use a number of efficient optimal control methods for the problem. An example illustrates the approach.



Mathematics ◽  
2021 ◽  
Vol 9 (13) ◽  
pp. 1483
Author(s):  
Shanqin Chen

Weighted essentially non-oscillatory (WENO) methods are especially efficient for numerically solving nonlinear hyperbolic equations. In order to achieve strong stability and large time-steps, strong stability preserving (SSP) integrating factor (IF) methods were designed in the literature, but the methods there were only for one-dimensional (1D) problems that have a stiff linear component and a non-stiff nonlinear component. In this paper, we extend WENO methods with large time-stepping SSP integrating factor Runge–Kutta time discretization to solve general nonlinear two-dimensional (2D) problems by a splitting method. How to evaluate the matrix exponential operator efficiently is a tremendous challenge when we apply IF temporal discretization for PDEs on high spatial dimensions. In this work, the matrix exponential computation is approximated through the Krylov subspace projection method. Numerical examples are shown to demonstrate the accuracy and large time-step size of the present method.



2008 ◽  
Vol 15 (3) ◽  
pp. 555-569
Author(s):  
Tariel Kiguradze

Abstract In the rectangle Ω = [0, a] × [0, b] the nonlinear hyperbolic equation 𝑢(2,2) = 𝑓(𝑥, 𝑦, 𝑢) with the continuous right-hand side 𝑓 : Ω × ℝ → ℝ is considered. Unimprovable in a sense sufficient conditions of solvability of Dirichlet, Dirichlet–Nicoletti and Nicoletti boundary value problems are established.



Sign in / Sign up

Export Citation Format

Share Document