Invariant analysis on a real reductive Lie algebra

Author(s):  
V. S. Varadarajan
2019 ◽  
Vol 30 (03) ◽  
pp. 451-466
Author(s):  
Dietrich Burde ◽  
Vsevolod Gubarev

We introduce post-associative algebra structures and study their relationship to post-Lie algebra structures, Rota–Baxter operators and decompositions of associative algebras and Lie algebras. We show several results on the existence of such structures. In particular, we prove that there exists no post-Lie algebra structure on a pair [Formula: see text], where [Formula: see text] is a simple Lie algebra and [Formula: see text] is a reductive Lie algebra, which is not isomorphic to [Formula: see text]. We also show that there is no post-associative algebra structure on a pair [Formula: see text] arising from a Rota–Baxter operator of [Formula: see text], where [Formula: see text] is a semisimple associative algebra and [Formula: see text] is not semisimple. The proofs use results on Rota–Baxter operators and decompositions of algebras.


2012 ◽  
Vol 148 (5) ◽  
pp. 1561-1592 ◽  
Author(s):  
Brian D. Boe ◽  
Jonathan R. Kujawa ◽  
Daniel K. Nakano

AbstractLet ${\Xmathfrak g}={\Xmathfrak g}_{\zerox }\oplus {\Xmathfrak g}_{\onex }$ be a classical Lie superalgebra and let ℱ be the category of finite-dimensional ${\Xmathfrak g}$-supermodules which are completely reducible over the reductive Lie algebra ${\Xmathfrak g}_{\zerox }$. In [B. D. Boe, J. R. Kujawa and D. K. Nakano, Complexity and module varieties for classical Lie superalgebras, Int. Math. Res. Not. IMRN (2011), 696–724], we demonstrated that for any module M in ℱ the rate of growth of the minimal projective resolution (i.e. the complexity of M) is bounded by the dimension of ${\Xmathfrak g}_{\onex }$. In this paper we compute the complexity of the simple modules and the Kac modules for the Lie superalgebra $\Xmathfrak {gl}(m|n)$. In both cases we show that the complexity is related to the atypicality of the block containing the module.


2011 ◽  
Vol 147 (2) ◽  
pp. 428-466 ◽  
Author(s):  
Jean-Louis Colliot-Thélène ◽  
Boris Kunyavskiĭ ◽  
Vladimir L. Popov ◽  
Zinovy Reichstein

AbstractLet k be a field of characteristic zero, let G be a connected reductive algebraic group over k and let 𝔤 be its Lie algebra. Let k(G), respectively, k(𝔤), be the field of k-rational functions on G, respectively, 𝔤. The conjugation action of G on itself induces the adjoint action of G on 𝔤. We investigate the question whether or not the field extensions k(G)/k(G)G and k(𝔤)/k(𝔤)G are purely transcendental. We show that the answer is the same for k(G)/k(G)G and k(𝔤)/k(𝔤)G, and reduce the problem to the case where G is simple. For simple groups we show that the answer is positive if G is split of type An or Cn, and negative for groups of other types, except possibly G2. A key ingredient in the proof of the negative result is a recent formula for the unramified Brauer group of a homogeneous space with connected stabilizers. As a byproduct of our investigation we give an affirmative answer to a question of Grothendieck about the existence of a rational section of the categorical quotient morphism for the conjugating action of G on itself.


Sign in / Sign up

Export Citation Format

Share Document