reductive algebraic group
Recently Published Documents


TOTAL DOCUMENTS

55
(FIVE YEARS 9)

H-INDEX

8
(FIVE YEARS 0)

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Falk Bannuscher ◽  
Alastair Litterick ◽  
Tomohiro Uchiyama

Abstract Let 𝑘 be a non-perfect separably closed field. Let 𝐺 be a connected reductive algebraic group defined over 𝑘. We study rationality problems for Serre’s notion of complete reducibility of subgroups of 𝐺. In particular, we present the first example of a connected non-abelian 𝑘-subgroup 𝐻 of 𝐺 that is 𝐺-completely reducible but not 𝐺-completely reducible over 𝑘, and the first example of a connected non-abelian 𝑘-subgroup H ′ H^{\prime} of 𝐺 that is 𝐺-completely reducible over 𝑘 but not 𝐺-completely reducible. This is new: all previously known such examples are for finite (or non-connected) 𝐻 and H ′ H^{\prime} only.


2021 ◽  
Vol 25 (27) ◽  
pp. 780-806
Author(s):  
Pierre Baumann ◽  
Arnaud Demarais

Let G G be a connected reductive algebraic group over C \mathbb C . Through the geometric Satake equivalence, the fundamental classes of the Mirković–Vilonen cycles define a basis in each tensor product V ( λ 1 ) ⊗ ⋯ ⊗ V ( λ r ) V(\lambda _1)\otimes \cdots \otimes V(\lambda _r) of irreducible representations of G G . We compute this basis in the case G = S L 2 ( C ) G=\mathrm {SL}_2(\mathbb C) and conclude that in this case it coincides with the dual canonical basis at q = 1 q=1 .


Author(s):  
Maike Gruchot ◽  
Alastair Litterick ◽  
Gerhard Röhrle

AbstractIn this note, we unify and extend various concepts in the area of G-complete reducibility, where G is a reductive algebraic group. By results of Serre and Bate–Martin–Röhrle, the usual notion of G-complete reducibility can be re-framed as a property of an action of a group on the spherical building of the identity component of G. We show that other variations of this notion, such as relative complete reducibility and $$\sigma $$ σ -complete reducibility, can also be viewed as special cases of this building-theoretic definition, and hence a number of results from these areas are special cases of more general properties.


2021 ◽  
Vol 29 (2) ◽  
pp. 171-182
Author(s):  
Mikhail V. Ignatev

Abstract A rook placement is a subset of a root system consisting of positive roots with pairwise non-positive inner products. To each rook placement in a root system one can assign the coadjoint orbit of the Borel subgroup of a reductive algebraic group with this root system. Degenerations of such orbits induce a natural partial order on the set of rook placements. We study combinatorial structure of the set of rook placements in An− 1 with respect to a slightly different order and prove that this poset is graded.


2020 ◽  
Vol 8 ◽  
Author(s):  
MAIKE GRUCHOT ◽  
ALASTAIR LITTERICK ◽  
GERHARD RÖHRLE

We study a relative variant of Serre’s notion of $G$ -complete reducibility for a reductive algebraic group $G$ . We let $K$ be a reductive subgroup of $G$ , and consider subgroups of $G$ that normalize the identity component $K^{\circ }$ . We show that such a subgroup is relatively $G$ -completely reducible with respect to $K$ if and only if its image in the automorphism group of $K^{\circ }$ is completely reducible. This allows us to generalize a number of fundamental results from the absolute to the relative setting. We also derive analogous results for Lie subalgebras of the Lie algebra of $G$ , as well as ‘rational’ versions over nonalgebraically closed fields.


2020 ◽  
Vol 8 ◽  
Author(s):  
Michael Bate ◽  
Benjamin Martin ◽  
Gerhard Röhrle

Let G be a reductive algebraic group—possibly non-connected—over a field k, and let H be a subgroup of G. If $G= {GL }_n$ , then there is a degeneration process for obtaining from H a completely reducible subgroup $H'$ of G; one takes a limit of H along a cocharacter of G in an appropriate sense. We generalise this idea to arbitrary reductive G using the notion of G-complete reducibility and results from geometric invariant theory over non-algebraically closed fields due to the authors and Herpel. Our construction produces a G-completely reducible subgroup $H'$ of G, unique up to $G(k)$ -conjugacy, which we call a k-semisimplification of H. This gives a single unifying construction that extends various special cases in the literature (in particular, it agrees with the usual notion for $G= GL _n$ and with Serre’s ‘G-analogue’ of semisimplification for subgroups of $G(k)$ from [19]). We also show that under some extra hypotheses, one can pick $H'$ in a more canonical way using the Tits Centre Conjecture for spherical buildings and/or the theory of optimal destabilising cocharacters introduced by Hesselink, Kempf, and Rousseau.


2019 ◽  
Vol 2019 (754) ◽  
pp. 1-15
Author(s):  
Christine Huyghe ◽  
Tobias Schmidt

Abstract Soient p un nombre premier, V un anneau de valuation discrète complet d’inégales caractéristiques (0,p) , et G un groupe réductif et deployé sur \operatorname{Spec}V . Nous obtenons un théorème de localisation, en utilisant les distributions arithmétiques, pour le faisceau des opérateurs différentiels arithmétiques sur la variété de drapeaux formelle de G. Nous donnons une application à la cohomologie rigide pour des ouverts dans la variété de drapeaux en caractéristique p. Let p be a prime number, V a complete discrete valuation ring of unequal characteristics (0,p) , and G a connected split reductive algebraic group over \operatorname{Spec}V . We obtain a localization theorem, involving arithmetic distributions, for the sheaf of arithmetic differential operators on the formal flag variety of G. We give an application to the rigid cohomology of open subsets in the characteristic p flag variety.


2019 ◽  
Vol 31 (5) ◽  
pp. 1225-1263
Author(s):  
Neven Grbac ◽  
Joachim Schwermer

AbstractThe cohomology of an arithmetic congruence subgroup of a connected reductive algebraic group defined over a number field is captured in the automorphic cohomology of that group. The residual Eisenstein cohomology is by definition the part of the automorphic cohomology represented by square-integrable residues of Eisenstein series. The existence of residual Eisenstein cohomology classes depends on a subtle combination of geometric conditions (coming from cohomological reasons) and arithmetic conditions in terms of analytic properties of automorphic L-functions (coming from the study of poles of Eisenstein series). Hence, there are almost no unconditional results in the literature regarding the very existence of non-trivial residual Eisenstein cohomology classes. In this paper, we show the existence of certain non-trivial residual cohomology classes in the case of the split symplectic, and odd and even special orthogonal groups of rank two, as well as the exceptional group of type {\mathrm{G}_{2}}, defined over a totally real number field. The construction of cuspidal automorphic representations of {\mathrm{GL}_{2}} with prescribed local and global properties is decisive in this context.


2019 ◽  
pp. 1-13
Author(s):  
Maxime Bergeron ◽  
Lior Silberman

Let [Formula: see text] be a Baumslag–Solitar group and let [Formula: see text] be a complex reductive algebraic group with maximal compact subgroup [Formula: see text]. We show that, when [Formula: see text] and [Formula: see text] are relatively prime with distinct absolute values, there is a strong deformation retraction of Hom([Formula: see text]) onto Hom([Formula: see text]).


2018 ◽  
Vol 62 (2) ◽  
pp. 559-594
Author(s):  
Rolf Farnsteiner

AbstractLetUbe the unipotent radical of a Borel subgroup of a connected reductive algebraic groupG, which is defined over an algebraically closed fieldk. In this paper, we extend work by Goodwin and Röhrle concerning the commuting variety of Lie(U) for Char(k) = 0 to fields whose characteristic is good forG.


Sign in / Sign up

Export Citation Format

Share Document