Parallel algorithms for the convex hull problem in two dimensions

Author(s):  
Dhruva Nath ◽  
S. N. Maheshwari ◽  
P. C. P. Bhatt
Author(s):  
Guy Bouchitté ◽  
Ornella Mattei ◽  
Graeme W. Milton ◽  
Pierre Seppecher

In many applications of structural engineering, the following question arises: given a set of forces f 1 ,  f 2 , …,  f N applied at prescribed points x 1 ,  x 2 , …,  x N , under what constraints on the forces does there exist a truss structure (or wire web) with all elements under tension that supports these forces? Here we provide answer to such a question for any configuration of the terminal points x 1 ,  x 2 , …,  x N in the two- and three-dimensional cases. Specifically, the existence of a web is guaranteed by a necessary and sufficient condition on the loading which corresponds to a finite dimensional linear programming problem. In two dimensions, we show that any such web can be replaced by one in which there are at most P elementary loops, where elementary means that the loop cannot be subdivided into subloops, and where P is the number of forces f 1 ,  f 2 , …,  f N applied at points strictly within the convex hull of x 1 ,  x 2 , …,  x N . In three dimensions, we show that, by slightly perturbing f 1 ,  f 2 , …,  f N , there exists a uniloadable web supporting this loading. Uniloadable means it supports this loading and all positive multiples of it, but not any other loading. Uniloadable webs provide a mechanism for channelling stress in desired ways.


1995 ◽  
Vol 05 (01n02) ◽  
pp. 145-170 ◽  
Author(s):  
JOHN HERSHBERGER

We provide optimal parallel solutions to several shortest path and visibility problems set in triangulated simple polygons. Let P be a triangulated simple polygon with n vertices, preprocessed to support shortest path queries. We can find the shortest path tree from any point inside P in O(log n) time using O(n/log n) processors. In the game bounds, we can preprocess P for shooting queries (a query can be answered in O(log n) time by a uniprocessor). Given a set S of m points inside P, we can find an implicit representation of the relative convex hull of S in O(log(nm)) time with O(m) processors. If the relative convex hull has k edges, we can explicitly produce these edges in O(log(nm)) time with O(k/log(nm)) processors. All of these algorithms are deterministic and use the CREW PRAM model.


1979 ◽  
Vol 9 (3) ◽  
pp. 141-142 ◽  
Author(s):  
Ferenc Dévai ◽  
Tibor Szendrényi

1987 ◽  
Vol 5 (3) ◽  
pp. 373-375 ◽  
Author(s):  
Ivan Stojmenović ◽  
David J Evans

Sign in / Sign up

Export Citation Format

Share Document