Asymptotically optimal policies for controlled queues in heavy traffic

Author(s):  
E. V. Krichagina ◽  
M. I. Taksar
1975 ◽  
Vol 7 (3) ◽  
pp. 656-671 ◽  
Author(s):  
John H. Rath

This paper studies a controlled queueing system in which the decisionmaker may change servers according to rules which depend only on the queue length. It is proved that for a given control policy a properly normalised sequence of these controlled queue length processes converges weakly to a controlled diffusion process as the queueing systems approach a state of heavy traffic.


1975 ◽  
Vol 7 (03) ◽  
pp. 656-671 ◽  
Author(s):  
John H. Rath

This paper studies a controlled queueing system in which the decisionmaker may change servers according to rules which depend only on the queue length. It is proved that for a given control policy a properly normalised sequence of these controlled queue length processes converges weakly to a controlled diffusion process as the queueing systems approach a state of heavy traffic.


2021 ◽  
Author(s):  
Lun Yu ◽  
Seyed Iravani ◽  
Ohad Perry

The paper “Fluid-Diffusion-Hybrid (FDH) Approximation” proposes a new heavy-traffic asymptotic regime for a two-class priority system in which the high-priority customers require substantially larger service times than the low-priority customers. In the FDH limit, the high-priority queue is a diffusion, whereas the low-priority queue operates as a (random) fluid limit, whose dynamics are driven by the former diffusion. A characterizing property of our limit process is that, unlike other asymptotic regimes, a non-negligible proportion of the customers from both classes must wait for service. This property allows us to study the costs and benefits of de-pooling, and prove that a two-pool system is often the asymptotically optimal design of the system.


Sign in / Sign up

Export Citation Format

Share Document