scholarly journals Ephemeral islands, plunging quantum extremal surfaces and BCFT channels

2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
Timothy J. Hollowood ◽  
S. Prem Kumar ◽  
Andrea Legramandi ◽  
Neil Talwar

Abstract We consider entanglement entropies of finite spatial intervals in Minkowski radiation baths coupled to the eternal black hole in JT gravity, and the related problem involving free fermion BCFT in the thermofield double state. We show that the non-monotonic entropy evolution in the black hole problem precisely matches that of the free fermion theory in a high temperature limit, and the results have the form expected for CFTs with quasiparticle description. Both exhibit rich behaviour that involves at intermediate times, an entropy saddle with an island in the former case, and in the latter a special class of disconnected OPE channels. The quantum extremal surfaces start inside the horizon, but can emerge from and plunge back inside as time evolves, accompanied by a characteristic dip in the entropy also seen in the free fermion BCFT. Finally an entropy equilibrium is reached with a no-island saddle.

2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Kohki Kawabata ◽  
Tatsuma Nishioka ◽  
Yoshitaka Okuyama ◽  
Kento Watanabe

Abstract We consider the capacity of entanglement as a probe of the Hawking radiation in a two-dimensional dilaton gravity coupled with conformal matter of large degrees of freedom. A formula calculating the capacity is derived using the gravitational path integral, from which we speculate that the capacity has a discontinuity at the Page time in contrast to the continuous behavior of the generalized entropy. We apply the formula to a replica wormhole solution in an eternal AdS black hole coupled to a flat non-gravitating bath and show that the capacity of entanglement is saturated by the thermal capacity of the black hole in the high temperature limit.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Joonho Kim ◽  
Seok Kim ◽  
Jaewon Song

Abstract We study the asymptotic behavior of the (modified) superconformal index for 4d $$ \mathcal{N} $$ N = 1 gauge theory. By considering complexified chemical potential, we find that the ‘high-temperature limit’ of the index can be written in terms of the conformal anomalies 3c − 2a. We also find macroscopic entropy from our asymptotic free energy when the Hofman-Maldacena bound 1/2 < a/c < 3/2 for the interacting SCFT is satisfied. We study $$ \mathcal{N} $$ N = 1 theories that are dual to AdS5 × Yp,p and find that the Cardy limit of our index accounts for the Bekenstein-Hawking entropy of large black holes.


2014 ◽  
Vol 8 (2) ◽  
pp. 59-68
Author(s):  
Ana Kozmidis-Petrovic

The Vogel-Fulcher-Tammann (VFT), Avramov and Milchev (AM) as well as Mauro, Yue, Ellison, Gupta and Allan (MYEGA) functions of viscous flow are analysed when the compositionally independent high temperature viscosity limit is introduced instead of the compositionally dependent parameter ??. Two different approaches are adopted. In the first approach, it is assumed that each model should have its own (average) hightemperature viscosity parameter ??. In that case, ?? is different for each of these three models. In the second approach, it is assumed that the high-temperature viscosity is a truly universal value, independent of the model. In this case, the parameter ?? would be the same and would have the same value: log ?? = ?1.93 dPa?s for all three models. 3D diagrams can successfully predict the difference in behaviour of viscous functions when average or universal high temperature limit is applied in calculations. The values of the AM functions depend, to a greater extent, on whether the average or the universal value for ?? is used which is not the case with the VFT model. Our tests and values of standard error of estimate (SEE) show that there are no general rules whether the average or universal high temperature viscosity limit should be applied to get the best agreement with the experimental functions.


Sign in / Sign up

Export Citation Format

Share Document