scholarly journals Null hypersurface quantization, electromagnetic duality and asympotic symmetries of Maxwell theory

2018 ◽  
Vol 2018 (3) ◽  
Author(s):  
Arpan Bhattacharyya ◽  
Ling-Yan Hung ◽  
Yikun Jiang
2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Lorenzo Bianchi ◽  
Adam Chalabi ◽  
Vladimír Procházka ◽  
Brandon Robinson ◽  
Jacopo Sisti

Abstract We study co-dimension two monodromy defects in theories of conformally coupled scalars and free Dirac fermions in arbitrary d dimensions. We characterise this family of conformal defects by computing the one-point functions of the stress-tensor and conserved current for Abelian flavour symmetries as well as two-point functions of the displacement operator. In the case of d = 4, the normalisation of these correlation functions are related to defect Weyl anomaly coefficients, and thus provide crucial information about the defect conformal field theory. We provide explicit checks on the values of the defect central charges by calculating the universal part of the defect contribution to entanglement entropy, and further, we use our results to extract the universal part of the vacuum Rényi entropy. Moreover, we leverage the non-supersymmetric free field results to compute a novel defect Weyl anomaly coefficient in a d = 4 theory of free $$ \mathcal{N} $$ N = 2 hypermultiplets. Including singular modes in the defect operator product expansion of fundamental fields, we identify notable relevant deformations in the singular defect theories and show that they trigger a renormalisation group flow towards an IR fixed point with the most regular defect OPE. We also study Gukov-Witten defects in free d = 4 Maxwell theory and show that their central charges vanish.


2020 ◽  
Vol 2020 (8) ◽  
Author(s):  
Ignatios Antoniadis ◽  
Jean-Pierre Derendinger ◽  
Hongliang Jiang ◽  
Gabriele Tartaglino-Mazzucchelli

Abstract A necessary condition for partial breaking of $$ \mathcal{N} $$ N = 2 global supersymmetry is the presence of nonlinear deformations of the field transformations which cannot be generated by background values of auxiliary fields. This work studies the simplest of these deformations which already occurs in $$ \mathcal{N} $$ N = 1 global supersymmetry, and its coupling to supergravity. It can be viewed as an imaginary constant shift of the D-auxiliary real field of an abelian gauge multiplet. We show how this deformation describes the magnetic dual of a Fayet-Iliopoulos term, a result that remains valid in supergravity, using its new-minimal formulation. Local supersymmetry and the deformation induce a positive cosmological constant. Moreover, the deformed U(1) Maxwell theory coupled to supergravity describes upon elimination of the auxiliary fields the gauging of R-symmetry, realised by the Freedman model of 1976. To this end, we construct the chiral spinor multiplet in superconformal tensor calculus by working out explicitly its transformation rules and use it for an alternative description of the new-minimal supergravity coupled to a U(1) multiplet. We also discuss the deformed Maxwell theory in curved superspace.


1998 ◽  
Vol 15 (8) ◽  
pp. 2153-2164 ◽  
Author(s):  
Sergio Ferrara ◽  
Christian Fronsdal
Keyword(s):  

2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Christopher P. Herzog ◽  
Abhay Shrestha

Abstract This paper is designed to be a practical tool for constructing and investigating two-point correlation functions in defect conformal field theory, directly in physical space, between any two bulk primaries or between a bulk primary and a defect primary, with arbitrary spin. Although geometrically elegant and ultimately a more powerful approach, the embedding space formalism gets rather cumbersome when dealing with mixed symmetry tensors, especially in the projection to physical space. The results in this paper provide an alternative method for studying two-point correlation functions for a generic d-dimensional conformal field theory with a flat p-dimensional defect and d − p = q co-dimensions. We tabulate some examples of correlation functions involving a conserved current, an energy momentum tensor and a Maxwell field strength, while analysing the constraints arising from conservation and the equations of motion. A method for obtaining bulk-to-defect correlators is also explained. Some explicit examples are considered: free scalar theory on ℝp× (ℝq/ℤ2) and a free four dimensional Maxwell theory on a wedge.


Sign in / Sign up

Export Citation Format

Share Document