maxwell theory
Recently Published Documents


TOTAL DOCUMENTS

355
(FIVE YEARS 71)

H-INDEX

32
(FIVE YEARS 4)

2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
Nabamita Banerjee ◽  
Tabasum Rahnuma ◽  
Ranveer Kumar Singh

Abstract Asymptotic symmetry plays an important role in determining physical observables of a theory. Recently, in the context of four dimensional asymptotically flat pure gravity and $$ \mathcal{N} $$ N = 1 supergravity, it has been proposed that OPEs of appropriate celestial amplitudes can be used to find their asymptotic symmetries. In this paper we find the asymptotic symmetry algebras of four dimensional Einstein-Yang-Mills and Einstein-Maxwell theories using this alternative approach, namely using the OPEs of their respective celestial amplitudes. The algebra obtained here are in agreement with the known results in the literature.


2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
Maciej Kolanowski

Abstract We study all transverse deformations of the extremal Reissner-Nordström–(A)dS horizon in the Einstein-Maxwell theory. No symmetry assumptions are needed. It is shown, that for the generic values of a charge, the only allowed deformation is spherically symmetric. However, it is shown that for fine-tuned values of the charge, the space of deformations is larger, yet still finite-dimensional.


2021 ◽  
Author(s):  
Sangwha Yi

We found equations of complex scalar fields and electromagnetic fields on interaction of complexscalar fields and electromagnetic fields in Klein-Gordon-Maxwell theory from Type A of wave function andType B of expanded distance in cosmological inertial frame.


Author(s):  
Josh Cork ◽  
Derek Harland ◽  
Thomas Winyard

Abstract We consider gauged skyrmions with boundary conditions which break the gauge from SU(2) to U(1) in models derived from Yang–Mills theory. After deriving general topological energy bounds, we approximate charge 1 energy minimisers using KvBLL calorons with non-trivial asymptotic holonomy, use them to calibrate the model to optimise the ratio of energy to lower bound, and compare them with solutions to full numerical simulation. Skyrmions from calorons with non-trivial asymptotic holonomy exhibit a non-zero magnetic dipole moment, which we calculate explicitly, and compare with experimental values for the proton and the neutron. We thus propose a way to develop a physically realistic Skyrme–Maxwell theory, with the potential for exhibiting low binding energies.


Author(s):  
Shubham Singh

In this article, I'll be reviewing relativistic mechanisms using the calculus of variation in the classical limit. The variational principle is considered to be one of the most important mechanisms to build a theory. Newton's second law of motion is a consequence of Euler-Lagrange equations which gives the least (or stationary) trajectory of a particle between any two arbitrary points. I'll the use action principle by deriving the relativistic Maxwell's field equation, geodesic equation, and Einstein's field equation.


Author(s):  
Yves Brihaye ◽  
Betti Hartmann

Abstract We study standard Einstein-Maxwell theory minimally coupled to a complex valued and self-interacting scalar field. We demonstrate that new, previously unnoticed spherically symmetric, charged black hole solutions with scalar hair exist in this model for sufficiently large gravitational coupling and sufficiently small electromagnetic coupling. The novel scalar hair has the form of a spatially oscillating “wave packet” and back-reacts on the space-time such that both the Ricci and the Kretschmann scalar, respectively, possess qualitatively similar oscillations.


Author(s):  
E. Comay

The physical community agrees that the variational principle is a cornerstone of a quantum fields theory (QFT) of an elementary particle. This approach examines the variation of the action of a Lagrangian density whose form is \(S = \int d^4 x \mathcal {L}(\psi,\psi_{,\mu}).\) The dimension of the action \(S\) and \(d^4x\) prove that the quantum function \(\psi\) of any specific Lagrangian density \(\mathcal {L}(\psi,\psi_{,\mu})\) has a definite dimension. This evidence determines the results of new consistency tests of QFTs. This work applies these tests to several kinds of quantum functions of a QFT of elementary particles. It proves that coherent results are derived from the standard form of quantum electrodynamics which depends on the Dirac linear equation of a massive charged particle and Maxwell theory of the electromagnetic fields. In contrast, contradictions stem from second-order quantum theories of an elementary particle, such as the Klein-Gordon equation and the electroweak theory of the \(W^\pm\) boson. An observation of the literature that discusses the latter theories indicates that they do not settle the above-mentioned crucial problems. This issue supports the main results of this work.


2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Kang Zhou

Abstract We generalize the unifying relations for tree amplitudes to the 1-loop Feynman integrands. By employing the 1-loop CHY formula, we construct differential operators which transmute the 1-loop gravitational Feynman integrand to Feynman integrands for a wide range of theories, including Einstein-Yang-Mills theory, Einstein-Maxwell theory, pure Yang-Mills theory, Yang-Mills-scalar theory, Born-Infeld theory, Dirac-Born-Infeld theory, bi-adjoint scalar theory, non-linear sigma model, as well as special Galileon theory. The unified web at 1-loop level is established. Under the well known unitarity cut, the 1-loop level operators will factorize into two tree level operators. Such factorization is also discussed.


2021 ◽  
Vol 27 (4) ◽  
pp. 401-402
Author(s):  
S. V. Bolokhov ◽  
K. A. Bronnikov ◽  
S. Krasnikov ◽  
M. V. Skvortsova

2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Jie Jiang ◽  
Aofei Sang ◽  
Ming Zhang

Abstract After considering the quantum corrections of Einstein-Maxwell theory, the effective theory will contain some higher-curvature terms and nonminimally coupled electromagnetic fields. In this paper, we study the first law of black holes in the gravitational electromagnetic system with the Lagrangian ℒ(gab, Rabcd, Fab). Firstly, we calculate the Noether charge and the variational identity in this theory, and then generically derive the first law of thermodynamics for an asymptotically flat stationary-axisymmetric symmetric black hole without the requirement that the electromagnetic field is smooth on the bifurcation surface. Our results indicate that the first law of black hole thermodynamics might be valid for the Einstein-Maxwell theory with some quantum corrections in the effective region.


Sign in / Sign up

Export Citation Format

Share Document