scholarly journals Intersection numbers on $$ {\overline{M}}_{g,n} $$ and BKP hierarchy

2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Alexander Alexandrov

Abstract In their recent inspiring paper, Mironov and Morozov claim a surprisingly simple expansion formula for the Kontsevich-Witten tau-function in terms of the Schur Q-functions. Here we provide a similar description for the Brézin-Gross-Witten tau-function. Moreover, we identify both tau-functions of the KdV hierarchy, which describe intersection numbers on the moduli spaces of punctured Riemann surfaces, with the hypergeometric solutions of the BKP hierarchy.

2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Kazumi Okuyama ◽  
Kazuhiro Sakai

Abstract We study thermal correlation functions of Jackiw-Teitelboim (JT) supergravity. We focus on the case of JT supergravity on orientable surfaces without time-reversal symmetry. As shown by Stanford and Witten recently, the path integral amounts to the computation of the volume of the moduli space of super Riemann surfaces, which is characterized by the Brezin-Gross-Witten (BGW) tau-function of the KdV hierarchy. We find that the matrix model of JT supergravity is a special case of the BGW model with infinite number of couplings turned on in a specific way, by analogy with the relation between bosonic JT gravity and the Kontsevich-Witten (KW) model. We compute the genus expansion of the one-point function of JT supergravity and study its low-temperature behavior. In particular, we propose a non-perturbative completion of the one-point function in the Bessel case where all couplings in the BGW model are set to zero. We also investigate the free energy and correlators when the Ramond-Ramond flux is large. We find that by defining a suitable basis higher genus free energies are written exactly in the same form as those of the KW model, up to the constant terms coming from the volume of the unitary group. This implies that the constitutive relation of the KW model is universal to the tau-function of the KdV hierarchy.


2021 ◽  
Vol 11 (4) ◽  
Author(s):  
Marco Bertola

AbstractThe paper has two relatively distinct but connected goals; the first is to define the notion of Padé approximation of Weyl–Stiltjes transforms on an arbitrary compact Riemann surface of higher genus. The data consists of a contour in the Riemann surface and a measure on it, together with the additional datum of a local coordinate near a point and a divisor of degree g. The denominators of the resulting Padé-like approximation also satisfy an orthogonality relation and are sections of appropriate line bundles. A Riemann–Hilbert problem for a square matrix of rank two is shown to characterize these orthogonal sections, in a similar fashion to the ordinary orthogonal polynomial case. The second part extends this idea to explore its connection to integrable systems. The same data can be used to define a pairing between two sequences of line bundles. The locus in the deformation space where the pairing becomes degenerate for fixed degree coincides with the zeros of a “tau” function. We show how this tau function satisfies the Kadomtsev–Petviashvili hierarchy with respect to either deformation parameters, and a certain modification of the 2-Toda hierarchy when considering the whole sequence of tau functions. We also show how this construction is related to the Krichever construction of algebro-geometric solutions.


2014 ◽  
Vol 163 (12) ◽  
pp. 2271-2323 ◽  
Author(s):  
Curtis T. McMullen

2001 ◽  
Vol 12 (03) ◽  
pp. 339-371
Author(s):  
MARIKO MUKAI-HIDANO ◽  
YOSHIHIRO OHNITA

This paper aims to investigate the geometry of the moduli spaces of harmonic maps of compact Riemann surfaces into compact Lie groups or compact symmetric spaces. The approach here is to study the gauge theoretic equations for such harmonic maps and the moduli space of their solutions. We discuss the S1-action, the hyper-presymplectic structure, the energy function, the Hitchin map, the flag transforms on the moduli space, several kinds of subspaces in the moduli space, and the relationship among them, especially the structure of the critical point subset for the energy function on the moduli space. As results, we show that every uniton solution is a critical point of the energy function on the moduli space, and moreover we give a characterization of the fixed point subset fixed by S1-action in terms of a flag transform.


Sign in / Sign up

Export Citation Format

Share Document