point function
Recently Published Documents


TOTAL DOCUMENTS

527
(FIVE YEARS 107)

H-INDEX

38
(FIVE YEARS 4)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Etienne Granet ◽  
Henrik Dreyer ◽  
Fabian Essler

We consider the XY spin chain with arbitrary time-dependent magnetic field and anisotropy. We argue that a certain subclass of Gaussian states, called Coherent Ensemble (CE) following [1], provides a natural and unified framework for out-of-equilibrium physics in this model. We show that all correlation functions in the CE can be computed using form factor expansion and expressed in terms of Fredholm determinants. In particular, we present exact out-of-equilibrium expressions in the thermodynamic limit for the previously unknown order parameter 1-point function, dynamical 2-point function and equal-time 3-point function.


2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
Pouria Dadras

Abstract In this paper, we consider the evolution of the thermofield-double state under the double-traced operator that connects its both sides. We will compute the entanglement entropy of the resulting state using the replica trick for the large N field theory. To leading order, it can be computed from the two-point function of the theory, where, in CFTs, it is fixed by the symmetries. Due to the exponential decay of the interaction, the entanglement entropy saturates about the thermal time after the interaction is on. Next, we restrict ourselves to one dimension and assume that the theory at strong coupling is effectively described by the Schwarzian action. We then compute the coarse-grained entropy of the resulting state using the four-point function. The equality of the two entropies implies that the double-traced operators in our theory act coherently. In AdS/CFT correspondence where the thermofield-double state corresponds to a two-sided black hole, the action of a double-traced operator corresponds to shrinking or expanding the black hole in the bulk.


2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
Madalena Lemos ◽  
Balt C. van Rees ◽  
Xiang Zhao

Abstract We investigate the structure of conformal Regge trajectories for the maximally supersymmetric (2, 0) theories in six dimensions. The different conformal multiplets in a single superconformal multiplet must all have similarly-shaped Regge trajectories. We show that these super-descendant trajectories interact in interesting ways, leading to new constraints on their shape. For the four-point function of the stress tensor multiplet supersymmetry also softens the Regge behavior in some channels, and consequently we observe that ‘analyticity in spin’ holds for all spins greater than −3. All the physical operators in this correlator therefore lie on Regge trajectories and we describe an iterative scheme where the Lorentzian inversion formula can be used to bootstrap the four-point function. Some numerical experiments yield promising results, with OPE data approaching the numerical bootstrap results for all theories with rank greater than one.


Author(s):  
Mikhail D. Minin ◽  
◽  
Andrei G. Pronko ◽  

We consider the six-vertex model with the rational weights on an s by N square lattice with partial domain wall boundary conditions. We study the one-point function at the boundary where the free boundary conditions are imposed. For a finite lattice, it can be computed by the quantum inverse scattering method in terms of determinants. In the large N limit, the result boils down to an explicit terminating series in the parameter of the weights. Using the saddle-point method for an equivalent integral representation, we show that as s next tends to infinity, the one-point function demonstrates a step-wise behavior; at the vicinity of the step it scales as the error function. We also show that the asymptotic expansion of the one-point function can be computed from a second-order ordinary differential equation.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Alexey Milekhin

Abstract We continue the investigation of coupled Sachdev-Ye-Kitaev (SYK) models without Schwarzian action dominance. Like the original SYK, at large N and low energies these models have an approximate reparametrization symmetry. However, the dominant action for reparametrizations is non-local due to the presence of irrelevant local operator with small conformal dimension. We semi-analytically study different thermodynamic properties and the 4-point function and demonstrate that they significantly differ from the Schwarzian prediction. However, the residual entropy and maximal chaos exponent are the same as in Majorana SYK. We also discuss chain models and finite N corrections.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
David M. Ramirez

Abstract Recent work has suggested an intriguing relation between quantum chaos and energy density correlations, known as pole skipping. We investigate this relationship in two dimensional conformal field theories on a finite size spatial circle by studying the thermal energy density retarded two-point function on a torus. We find that the location ω* = iλ of pole skipping in the complex frequency plane is determined by the central charge and the stress energy one-point function 〈T〉 on the torus. In addition, we find a bound on λ in c > 1 compact, unitary CFT2s identical to the chaos bound, λ ≤ 2πT. This bound is saturated in large c CFT2s with a sparse light spectrum, as quantified by [1], for all temperatures above the dual Hawking-Page transition temperature.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Gaston Giribet

Abstract Motivated by recent works in which the FZZ duality plays an important role, we revisit the computation of correlation functions in the sine-Liouville field theory. We present a direct computation of the three-point function, the simplest to the best of our knowledge, and give expressions for the N-point functions in terms of integrated Liouville theory correlators. This leads us to discuss the relation to the $$ {H}_3^{+} $$ H 3 + WZW-Liouville correspondence, especially in the case in which spectral flow is taken into account. We explain how these results can be used to study scattering amplitudes of winding string states in AdS3.


2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Hare Krishna ◽  
D. Rodriguez-Gomez

Abstract We study 2-point correlation functions for scalar operators in position space through holography including bulk cubic couplings as well as higher curvature couplings to the square of the Weyl tensor. We focus on scalar operators with large conformal dimensions. This allows us to use the geodesic approximation for propagators. In addition to the leading order contribution, captured by geodesics anchored at the insertion points of the operators on the boundary and probing the bulk geometry thoroughly studied in the literature, the first correction is given by a Witten diagram involving both the bulk cubic coupling and the higher curvature couplings. As a result, this correction is proportional to the VEV of a neutral operator Ok and thus probes the interior of the black hole exactly as in the case studied by Grinberg and Maldacena [13]. The form of the correction matches the general expectations in CFT and allows to identify the contributions of TnOk (being Tn the general contraction of n energy-momentum tensors) to the 2-point function. This correction is actually the leading term for off-diagonal correlators (i.e. correlators for operators of different conformal dimension), which can then be computed holographically in this way.


2021 ◽  
Vol 2021 (11) ◽  
pp. 047
Author(s):  
Emanuela Dimastrogiovanni ◽  
Matteo Fasiello ◽  
A. Emir Gümrükçüoğlu

Abstract We consider the possibility of extra spinning particles during inflation, focussing on the spin-2 case. Our analysis relies on the well-known fully non-linear formulation of interacting spin-2 theories. We explore the parameter space of the corresponding inflationary Lagrangian and identify regions therein exhibiting signatures within reach of upcoming CMB probes. We provide a thorough study of the early and late-time dynamics ensuring that stability conditions are met throughout the cosmic evolution. We characterise in particular the gravitational wave spectrum and three-point function finding a local-type non-Gaussianity whose amplitude may be within the sensitivity range of both the LiteBIRD and CMB-S4 experiments.


Sign in / Sign up

Export Citation Format

Share Document