super riemann surfaces
Recently Published Documents


TOTAL DOCUMENTS

74
(FIVE YEARS 8)

H-INDEX

12
(FIVE YEARS 2)

2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Kazumi Okuyama ◽  
Kazuhiro Sakai

Abstract We study thermal correlation functions of Jackiw-Teitelboim (JT) supergravity. We focus on the case of JT supergravity on orientable surfaces without time-reversal symmetry. As shown by Stanford and Witten recently, the path integral amounts to the computation of the volume of the moduli space of super Riemann surfaces, which is characterized by the Brezin-Gross-Witten (BGW) tau-function of the KdV hierarchy. We find that the matrix model of JT supergravity is a special case of the BGW model with infinite number of couplings turned on in a specific way, by analogy with the relation between bosonic JT gravity and the Kontsevich-Witten (KW) model. We compute the genus expansion of the one-point function of JT supergravity and study its low-temperature behavior. In particular, we propose a non-perturbative completion of the one-point function in the Bessel case where all couplings in the BGW model are set to zero. We also investigate the free energy and correlators when the Ramond-Ramond flux is large. We find that by defining a suitable basis higher genus free energies are written exactly in the same form as those of the KW model, up to the constant terms coming from the volume of the unitary group. This implies that the constitutive relation of the KW model is universal to the tau-function of the KdV hierarchy.


2019 ◽  
Vol 34 (23) ◽  
pp. 1950126 ◽  
Author(s):  
Matsuo Sato

We define string geometry: spaces of superstrings including the interactions, their topologies, charts, and metrics. Trajectories in asymptotic processes on a space of strings reproduce the right moduli space of the super-Riemann surfaces in a target manifold. Based on the string geometry, we define Einstein–Hilbert action coupled with gauge fields, and formulate superstring theory nonperturbatively by summing over metrics and the gauge fields on the spaces of strings. This theory does not depend on backgrounds. The theory has a supersymmetry as a part of the diffeomorphisms symmetry on the superstring manifolds. We derive the all-order perturbative scattering amplitudes that possess the super moduli in type IIA, type IIB and SO(32) type I superstring theories from the single theory, by considering fluctuations around fixed backgrounds representing type IIA, type IIB and SO(32) type I perturbative vacua, respectively. The theory predicts that we can see a string if we microscopically observe not only a particle but also a point in the space–time. That is, this theory unifies particles and the space–time. This paper is a summary version of Ref. 1.


Sign in / Sign up

Export Citation Format

Share Document