scholarly journals Flavor invariants and renormalization-group equations in the leptonic sector with massive Majorana neutrinos

2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Yilin Wang ◽  
Bingrong Yu ◽  
Shun Zhou

Abstract In the present paper, we carry out a systematic study of the flavor invariants and their renormalization-group equations (RGEs) in the leptonic sector with three generations of charged leptons and massive Majorana neutrinos. First, following the approach of the Hilbert series from the invariant theory, we show that there are 34 basic flavor invariants in the generating set, among which 19 invariants are CP-even and the others are CP-odd. Any flavor invariants can be expressed as the polynomials of those 34 basic invariants in the generating set. Second, we explicitly construct all the basic invariants and derive their RGEs, which form a closed system of differential equations as they should. The numerical solutions to the RGEs of the basic flavor invariants have also been found. Furthermore, we demonstrate how to extract physical observables from the basic invariants. Our study is helpful for understanding the algebraic structure of flavor invariants in the leptonic sector, and also provides a novel way to explore leptonic flavor structures.

2003 ◽  
Vol 18 (10) ◽  
pp. 719-731 ◽  
Author(s):  
TAKESHI FUKUYAMA ◽  
TATSURU KIKUCHI

The renormalization group equations (RGEs) of the mass matrices of quarks and leptons in an SO(10) model with two-Higgs scalars in the Yukawa coupling are studied. This model is the minimal model of SUSY and non-SUSY SO(10) GUT which can reproduce all the experimental data. Non-SUSY SO(10) GUT model has the intermediate energy phase, Pati–Salam phase, and passes through the symmetry breaking pattern, SO (10) → SU (2)L × SU (2)R × SU (4)C → SU (2)L × U (1)Y × SU (3)C. Though minimal, it has, after the Pati–Salam phase, four Higgs doublets in Yukawa interactions. We consider the RGEs of the Yukawa coupling constants of quarks and charged leptons and of the coupling constants of the dimension-five operators of neutrinos corresponding to the above symmetry breaking pattern. The scalar quartic interactions are also incorporated.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Yohei Ema ◽  
Kyohei Mukaida ◽  
Jorinde van de Vis

Abstract We derive one- and two-loop renormalization group equations (RGEs) of Higgs-R2 inflation. This model has a non-minimal coupling between the Higgs and the Ricci scalar and a Ricci scalar squared term on top of the standard model. The RGEs derived in this paper are valid as long as the energy scale of interest (in the Einstein frame) is below the Planck scale. We also discuss implications to the inflationary predictions and the electroweak vacuum metastability.


1986 ◽  
Vol 180 (3) ◽  
pp. 264-268 ◽  
Author(s):  
G.C. Branco ◽  
L. Lavoura ◽  
M.N. Rebelo

2016 ◽  
Vol 25 (07) ◽  
pp. 1642002 ◽  
Author(s):  
Axel Weber ◽  
Pietro Dall’Olio ◽  
Francisco Astorga

We describe a technically very simple analytical approach to the deep infrared regime of Yang–Mills theory in the Landau gauge via Callan–Symanzik renormalization group equations in an epsilon expansion. This approach recovers all the solutions for the infrared gluon and ghost propagators previously found by solving the Dyson–Schwinger equations of the theory and singles out the solution with decoupling behavior, confirmed by lattice calculations, as the only one corresponding to an infrared attractive fixed point (for space-time dimensions above two). For the case of four dimensions, we describe the crossover of the system from the ultraviolet to the infrared fixed point and determine the complete momentum dependence of the propagators. The results for different renormalization schemes are compared to the lattice data.


Sign in / Sign up

Export Citation Format

Share Document