scholarly journals Symmetric formulation of neutrino oscillations in matter and its intrinsic connection to renormalization-group equations

2017 ◽  
Vol 44 (4) ◽  
pp. 044006 ◽  
Author(s):  
Shun Zhou
2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Yohei Ema ◽  
Kyohei Mukaida ◽  
Jorinde van de Vis

Abstract We derive one- and two-loop renormalization group equations (RGEs) of Higgs-R2 inflation. This model has a non-minimal coupling between the Higgs and the Ricci scalar and a Ricci scalar squared term on top of the standard model. The RGEs derived in this paper are valid as long as the energy scale of interest (in the Einstein frame) is below the Planck scale. We also discuss implications to the inflationary predictions and the electroweak vacuum metastability.


2016 ◽  
Vol 25 (07) ◽  
pp. 1642002 ◽  
Author(s):  
Axel Weber ◽  
Pietro Dall’Olio ◽  
Francisco Astorga

We describe a technically very simple analytical approach to the deep infrared regime of Yang–Mills theory in the Landau gauge via Callan–Symanzik renormalization group equations in an epsilon expansion. This approach recovers all the solutions for the infrared gluon and ghost propagators previously found by solving the Dyson–Schwinger equations of the theory and singles out the solution with decoupling behavior, confirmed by lattice calculations, as the only one corresponding to an infrared attractive fixed point (for space-time dimensions above two). For the case of four dimensions, we describe the crossover of the system from the ultraviolet to the infrared fixed point and determine the complete momentum dependence of the propagators. The results for different renormalization schemes are compared to the lattice data.


1974 ◽  
Vol 33 (25) ◽  
pp. 1524-1524
Author(s):  
J. F. Nicoll ◽  
T. S. Chang ◽  
H. E. Stanley

2018 ◽  
Vol 33 (26) ◽  
pp. 1830024 ◽  
Author(s):  
Jean-François Mathiot

Starting from a well-defined local Lagrangian, we analyze the renormalization group equations in terms of the two different arbitrary scales associated with the regularization procedure and with the physical renormalization of the bare parameters, respectively. We apply our formalism to the minimal subtraction scheme using dimensional regularization. We first argue that the relevant regularization scale in this case should be dimensionless. By relating bare and renormalized parameters to physical observables, we calculate the coefficients of the renormalization group equation up to two-loop order in the [Formula: see text] theory. We show that the usual assumption, considering the bare parameters to be independent of the regularization scale, is not a direct consequence of any physical argument. The coefficients that we find in our two-loop calculation are identical to the standard practice. We finally comment on the decoupling properties of the renormalized coupling constant.


Sign in / Sign up

Export Citation Format

Share Document