A central limit theorem for exchangeable random variables on a locally compact abelian group

2000 ◽  
Vol 74 (2) ◽  
pp. 115-119
Author(s):  
M. S. Bingham
2019 ◽  
Vol 484 (3) ◽  
pp. 273-276
Author(s):  
G. M. Feldman

Let x1, x2, x3 be independent random variables with values in a locally compact Abelian group X with nonvanish- ing characteristic functions, and aj, bj be continuous endomorphisms of X satisfying some restrictions. Let L1 = a1x1 + a2x2 + a3x3, L2 = b1x1 + b2x2 + b3x3. It was proved that the distribution of the random vector (L1; L2) determines the distributions of the random variables xj up a shift. This result is a group analogue of the well-known C.R. Rao theorem. We also prove an analogue of another C.R. Rao’s theorem for independent random variables with values in an a-adic solenoid.


2010 ◽  
Vol 88 (3) ◽  
pp. 339-352 ◽  
Author(s):  
GENNADIY FELDMAN ◽  
PIOTR GRACZYK

AbstractAccording to the Skitovich–Darmois theorem, the independence of two linear forms of n independent random variables implies that the random variables are Gaussian. We consider the case where independent random variables take values in a second countable locally compact abelian group X, and coefficients of the forms are topological automorphisms of X. We describe a wide class of groups X for which a group-theoretic analogue of the Skitovich–Darmois theorem holds true when n=2.


2021 ◽  
Vol 36 (2) ◽  
pp. 243-255
Author(s):  
Wei Liu ◽  
Yong Zhang

AbstractIn this paper, we investigate the central limit theorem and the invariance principle for linear processes generated by a new notion of independently and identically distributed (IID) random variables for sub-linear expectations initiated by Peng [19]. It turns out that these theorems are natural and fairly neat extensions of the classical Kolmogorov’s central limit theorem and invariance principle to the case where probability measures are no longer additive.


Sign in / Sign up

Export Citation Format

Share Document