scholarly journals Hyperbolic Harmonic Functions and Hyperbolic Brownian Motion

2020 ◽  
Vol 30 (5) ◽  
Author(s):  
Sirkka-Liisa Eriksson ◽  
Terhi Kaarakka

Abstract We study harmonic functions with respect to the Riemannian metric $$\begin{aligned} ds^{2}=\frac{dx_{1}^{2}+\cdots +dx_{n}^{2}}{x_{n}^{\frac{2\alpha }{n-2}}} \end{aligned}$$ d s 2 = d x 1 2 + ⋯ + d x n 2 x n 2 α n - 2 in the upper half space $$\mathbb {R}_{+}^{n}=\{\left( x_{1},\ldots ,x_{n}\right) \in \mathbb {R}^{n}:x_{n}>0\}$$ R + n = { x 1 , … , x n ∈ R n : x n > 0 } . They are called $$\alpha $$ α -hyperbolic harmonic. An important result is that a function f is $$\alpha $$ α -hyperbolic harmonic íf and only if the function $$g\left( x\right) =x_{n}^{-\frac{ 2-n+\alpha }{2}}f\left( x\right) $$ g x = x n - 2 - n + α 2 f x is the eigenfunction of the hyperbolic Laplace operator $$\bigtriangleup _{h}=x_{n}^{2}\triangle -\left( n-2\right) x_{n}\frac{\partial }{\partial x_{n}}$$ △ h = x n 2 ▵ - n - 2 x n ∂ ∂ x n corresponding to the eigenvalue $$\ \frac{1}{4}\left( \left( \alpha +1\right) ^{2}-\left( n-1\right) ^{2}\right) =0$$ 1 4 α + 1 2 - n - 1 2 = 0 . This means that in case $$\alpha =n-2$$ α = n - 2 , the $$n-2$$ n - 2 -hyperbolic harmonic functions are harmonic with respect to the hyperbolic metric of the Poincaré upper half-space. We are presenting some connections of $$\alpha $$ α -hyperbolic functions to the generalized hyperbolic Brownian motion. These results are similar as in case of harmonic functions with respect to usual Laplace and Brownian motion.

1997 ◽  
Vol 49 (1) ◽  
pp. 55-73 ◽  
Author(s):  
Huaihui Chen ◽  
Paul M. Gauthier

AbstractFor ameromorphic (or harmonic) function ƒ, let us call the dilation of ƒ at z the ratio of the (spherical)metric at ƒ(z) and the (hyperbolic)metric at z. Inequalities are knownwhich estimate the sup norm of the dilation in terms of its Lp norm, for p > 2, while capitalizing on the symmetries of ƒ. In the present paper we weaken the hypothesis by showing that such estimates persist even if the Lp norms are taken only over the set of z on which ƒ takes values in a fixed spherical disk. Naturally, the bigger the disk, the better the estimate. Also, We give estimates for holomorphic functions without zeros and for harmonic functions in the case that p = 2.


1973 ◽  
Vol 52 ◽  
pp. 133-145 ◽  
Author(s):  
Douglas Niebur

In this paper we consider a class of nonanalytic automorphic functions which were first mentioned to A. Selberg by C. L. Siegel. These functions have Fourier coefficients which are closely connected with the Fourier coefficients of analytic automorphic forms, and they are also eigenfunctions of the Laplace operator derived from the hyperbolic metric. We shall show how this latter property gives new results in the classical theory of automorphic forms.


2019 ◽  
Vol 29 (5) ◽  
Author(s):  
Sirkka-Liisa Eriksson ◽  
Heikki Orelma

Abstract We are studying hyperbolic function theory in the total skew-field of quaternions. Earlier the theory has been studied for quaternion valued functions depending only on three reduced variables. Our functions are depending on all four coordinates of quaternions. We consider functions, called $$\alpha $$α-hyperbolic harmonic, that are harmonic with respect to the Riemannian metric $$\begin{aligned} ds_{\alpha }^{2}=\frac{dx_{0}^{2}+dx_{1}^{2}+dx_{2}^{2}+dx_{3}^{2}}{x_{3}^{\alpha }} \end{aligned}$$dsα2=dx02+dx12+dx22+dx32x3αin the upper half space $${\mathbb {R}}_{+}^{4}=\{\left( x_{0},x_{1},x_{2} ,x_{3}\right) \in {\mathbb {R}}^{4}:x_{3}>0\}$$R+4={x0,x1,x2,x3∈R4:x3>0}. If $$\alpha =2$$α=2, the metric is the hyperbolic metric of the Poincaré upper half-space. Hempfling and Leutwiler started to study this case and noticed that the quaternionic power function $$x^{m}\,(m\in {\mathbb {Z}})$$xm(m∈Z), is a conjugate gradient of a 2-hyperbolic harmonic function. They researched polynomial solutions. Using fundamental $$\alpha $$α-hyperbolic harmonic functions, depending only on the hyperbolic distance and $$x_{3}$$x3, we verify a Cauchy type integral formula for conjugate gradient of $$\alpha $$α-hyperbolic harmonic functions. We also compare these results with the properties of paravector valued $$\alpha $$α-hypermonogenic in the Clifford algebra $${{\,\mathrm{{\mathcal {C}}\ell }\,}}_{0,3}$$Cℓ0,3.


2003 ◽  
Vol 2003 (20) ◽  
pp. 1141-1158 ◽  
Author(s):  
Peter A. Hästö

The Apollonian metric is a generalization of the hyperbolic metric. It is defined in arbitrary domains inℝn. In this paper, we derive optimal comparison results between this metric and thejGmetric in a large class of domains. These results allow us to prove that Euclidean bilipschitz mappings have small Apollonian bilipschitz constants in a domainGif and only ifGis a ball or half-space.


2014 ◽  
Vol 154 (6) ◽  
pp. 1550-1568 ◽  
Author(s):  
Valentina Cammarota ◽  
Alessandro De Gregorio ◽  
Claudio Macci

Sign in / Sign up

Export Citation Format

Share Document