scholarly journals Hyperbolic Function Theory in the Skew-Field of Quaternions

2019 ◽  
Vol 29 (5) ◽  
Author(s):  
Sirkka-Liisa Eriksson ◽  
Heikki Orelma

Abstract We are studying hyperbolic function theory in the total skew-field of quaternions. Earlier the theory has been studied for quaternion valued functions depending only on three reduced variables. Our functions are depending on all four coordinates of quaternions. We consider functions, called $$\alpha $$α-hyperbolic harmonic, that are harmonic with respect to the Riemannian metric $$\begin{aligned} ds_{\alpha }^{2}=\frac{dx_{0}^{2}+dx_{1}^{2}+dx_{2}^{2}+dx_{3}^{2}}{x_{3}^{\alpha }} \end{aligned}$$dsα2=dx02+dx12+dx22+dx32x3αin the upper half space $${\mathbb {R}}_{+}^{4}=\{\left( x_{0},x_{1},x_{2} ,x_{3}\right) \in {\mathbb {R}}^{4}:x_{3}>0\}$$R+4={x0,x1,x2,x3∈R4:x3>0}. If $$\alpha =2$$α=2, the metric is the hyperbolic metric of the Poincaré upper half-space. Hempfling and Leutwiler started to study this case and noticed that the quaternionic power function $$x^{m}\,(m\in {\mathbb {Z}})$$xm(m∈Z), is a conjugate gradient of a 2-hyperbolic harmonic function. They researched polynomial solutions. Using fundamental $$\alpha $$α-hyperbolic harmonic functions, depending only on the hyperbolic distance and $$x_{3}$$x3, we verify a Cauchy type integral formula for conjugate gradient of $$\alpha $$α-hyperbolic harmonic functions. We also compare these results with the properties of paravector valued $$\alpha $$α-hypermonogenic in the Clifford algebra $${{\,\mathrm{{\mathcal {C}}\ell }\,}}_{0,3}$$Cℓ0,3.

Analysis ◽  
2019 ◽  
Vol 39 (2) ◽  
pp. 59-64
Author(s):  
Yoichi Miyazaki

Abstract We give another proof of Poisson’s integral formula for harmonic functions in a ball or a half space by using heat kernels with Green’s formula. We wish to emphasize that this method works well even for a half space, which is an unbounded domain; the functions involved are integrable, since the heat kernel decays rapidly. This method needs no trick such as the subordination identity, which is indispensable when applying the Fourier transform method for a half space.


2020 ◽  
Vol 30 (5) ◽  
Author(s):  
Sirkka-Liisa Eriksson ◽  
Terhi Kaarakka

Abstract We study harmonic functions with respect to the Riemannian metric $$\begin{aligned} ds^{2}=\frac{dx_{1}^{2}+\cdots +dx_{n}^{2}}{x_{n}^{\frac{2\alpha }{n-2}}} \end{aligned}$$ d s 2 = d x 1 2 + ⋯ + d x n 2 x n 2 α n - 2 in the upper half space $$\mathbb {R}_{+}^{n}=\{\left( x_{1},\ldots ,x_{n}\right) \in \mathbb {R}^{n}:x_{n}>0\}$$ R + n = { x 1 , … , x n ∈ R n : x n > 0 } . They are called $$\alpha $$ α -hyperbolic harmonic. An important result is that a function f is $$\alpha $$ α -hyperbolic harmonic íf and only if the function $$g\left( x\right) =x_{n}^{-\frac{ 2-n+\alpha }{2}}f\left( x\right) $$ g x = x n - 2 - n + α 2 f x is the eigenfunction of the hyperbolic Laplace operator $$\bigtriangleup _{h}=x_{n}^{2}\triangle -\left( n-2\right) x_{n}\frac{\partial }{\partial x_{n}}$$ △ h = x n 2 ▵ - n - 2 x n ∂ ∂ x n corresponding to the eigenvalue $$\ \frac{1}{4}\left( \left( \alpha +1\right) ^{2}-\left( n-1\right) ^{2}\right) =0$$ 1 4 α + 1 2 - n - 1 2 = 0 . This means that in case $$\alpha =n-2$$ α = n - 2 , the $$n-2$$ n - 2 -hyperbolic harmonic functions are harmonic with respect to the hyperbolic metric of the Poincaré upper half-space. We are presenting some connections of $$\alpha $$ α -hyperbolic functions to the generalized hyperbolic Brownian motion. These results are similar as in case of harmonic functions with respect to usual Laplace and Brownian motion.


2015 ◽  
Vol 40 (2) ◽  
pp. 273-281 ◽  
Author(s):  
Piotr Kiełczyński ◽  
Marek Szalewski ◽  
Andrzej Balcerzak ◽  
Krzysztof Wieja

AbstractThis paper presents a theoretical study of the propagation behaviour of surface Love waves in nonhomogeneous functionally graded elastic materials, which is a vital problem in acoustics. The elastic properties (shear modulus) of a semi-infinite elastic half-space vary monotonically with the depth (distance from the surface of the material). Two Love wave waveguide structures are analyzed: 1) a nonhomogeneous elastic surface layer deposited on a homogeneous elastic substrate, and 2) a semi-infinite nonhomogeneous elastic half-space. The Direct Sturm-Liouville Problem that describes the propagation of Love waves in nonhomogeneous elastic functionally graded materials is formulated and solved 1) analytically in the case of the step profile, exponential profile and 1cosh2type profile, and 2) numerically in the case of the power type profiles (i.e. linear and quadratic), by using two numerical methods: i.e. a) Finite Difference Method, and b) Haskell-Thompson Transfer Matrix Method.The dispersion curves of phase and group velocity of surface Love waves in inhomogeneous elastic graded materials are evaluated. The integral formula for the group velocity of Love waves in nonhomogeneous elastic graded materials has been established. The results obtained in this paper can give a deeper insight into the nature of Love waves propagation in elastic nonhomogeneous functionally graded materials.


2019 ◽  
Vol 124 (1) ◽  
pp. 81-101
Author(s):  
Manfred Stoll

In the paper we characterize the reproducing kernel $\mathcal {K}_{n,h}$ for the Hardy space $\mathcal {H}^2$ of hyperbolic harmonic functions on the unit ball $\mathbb {B}$ in $\mathbb {R}^n$. Specifically we prove that \[ \mathcal {K}_{n,h}(x,y) = \sum _{\alpha =0}^\infty S_{n,\alpha }(\lvert x\rvert )S_{n,\alpha }(\lvert y\rvert ) Z_\alpha (x,y), \] where the series converges absolutely and uniformly on $K\times \mathbb {B}$ for every compact subset $K$ of $\mathbb {B}$. In the above, $S_{n,\alpha }$ is a hypergeometric function and $Z_\alpha $ is the reproducing kernel of the space of spherical harmonics of degree α. In the paper we prove that \[ 0\le \mathcal K_{n,h}(x,y) \le \frac {C_n}{(1-2\langle x,y\rangle + \lvert x \rvert^2 \lvert y \rvert^2)^{n-1}}, \] where $C_n$ is a constant depending only on $n$. It is known that the diagonal function $\mathcal K_{n,h}(x,x)$ is a radial eigenfunction of the hyperbolic Laplacian $\varDelta_h $ on $\mathbb{B} $ with eigenvalue $\lambda _2 = 8(n-1)^2$. The result for $n=4$ provides motivation that leads to an explicit characterization of all radial eigenfunctions of $\varDelta_h $ on $\mathbb{B} $. Specifically, if $g$ is a radial eigenfunction of $\varDelta_h $ with eigenvalue $\lambda _\alpha = 4(n-1)^2\alpha (\alpha -1)$, then \[ g(r) = g(0) \frac {p_{n,\alpha }(r^2)}{(1-r^2)^{(\alpha -1)(n-1)}}, \] where $p_{n,\alpha }$ is again a hypergeometric function. If α is an integer, then $p_{n,\alpha }(r^2)$ is a polynomial of degree $2(\alpha -1)(n-1)$.


2014 ◽  
Vol 2014 ◽  
pp. 1-9
Author(s):  
Yevgenya Movshovich

We obtain new sharp upper bounds of the inferior mean for positive harmonic functions defined by finite boundary measures that lie on curves or subspaces of the boundary of the half-space.


Sign in / Sign up

Export Citation Format

Share Document