scholarly journals A class of nonanalytic automorphic functions

1973 ◽  
Vol 52 ◽  
pp. 133-145 ◽  
Author(s):  
Douglas Niebur

In this paper we consider a class of nonanalytic automorphic functions which were first mentioned to A. Selberg by C. L. Siegel. These functions have Fourier coefficients which are closely connected with the Fourier coefficients of analytic automorphic forms, and they are also eigenfunctions of the Laplace operator derived from the hyperbolic metric. We shall show how this latter property gives new results in the classical theory of automorphic forms.

2020 ◽  
Vol 30 (5) ◽  
Author(s):  
Sirkka-Liisa Eriksson ◽  
Terhi Kaarakka

Abstract We study harmonic functions with respect to the Riemannian metric $$\begin{aligned} ds^{2}=\frac{dx_{1}^{2}+\cdots +dx_{n}^{2}}{x_{n}^{\frac{2\alpha }{n-2}}} \end{aligned}$$ d s 2 = d x 1 2 + ⋯ + d x n 2 x n 2 α n - 2 in the upper half space $$\mathbb {R}_{+}^{n}=\{\left( x_{1},\ldots ,x_{n}\right) \in \mathbb {R}^{n}:x_{n}>0\}$$ R + n = { x 1 , … , x n ∈ R n : x n > 0 } . They are called $$\alpha $$ α -hyperbolic harmonic. An important result is that a function f is $$\alpha $$ α -hyperbolic harmonic íf and only if the function $$g\left( x\right) =x_{n}^{-\frac{ 2-n+\alpha }{2}}f\left( x\right) $$ g x = x n - 2 - n + α 2 f x is the eigenfunction of the hyperbolic Laplace operator $$\bigtriangleup _{h}=x_{n}^{2}\triangle -\left( n-2\right) x_{n}\frac{\partial }{\partial x_{n}}$$ △ h = x n 2 ▵ - n - 2 x n ∂ ∂ x n corresponding to the eigenvalue $$\ \frac{1}{4}\left( \left( \alpha +1\right) ^{2}-\left( n-1\right) ^{2}\right) =0$$ 1 4 α + 1 2 - n - 1 2 = 0 . This means that in case $$\alpha =n-2$$ α = n - 2 , the $$n-2$$ n - 2 -hyperbolic harmonic functions are harmonic with respect to the hyperbolic metric of the Poincaré upper half-space. We are presenting some connections of $$\alpha $$ α -hyperbolic functions to the generalized hyperbolic Brownian motion. These results are similar as in case of harmonic functions with respect to usual Laplace and Brownian motion.


1992 ◽  
Vol 127 ◽  
pp. 61-82
Author(s):  
Tomio Kubota

In the present paper, we show that an infinite dimensional vector whose components are Fourier coefficients of an automorphic form is characterized as an infinite dimensional vector which is annihilated by an infinite matrix constructed by the values of a Bessel function. Results and methods are all simple and concrete.Although the idea in the present paper is applicable to more general cases, our investigation will be restricted to the case of automorphic forms of weight 0, i.e., automorphic functions, with respect to SL(2, Z) on the upper half plane, in order to explain the main idea distinctly.


2020 ◽  
Vol 18 (1) ◽  
pp. 1518-1530
Author(s):  
Xuesen Qi ◽  
Ximin Liu

Abstract In this paper, we discuss the monotonicity of the first nonzero eigenvalue of the Laplace operator and the p-Laplace operator under a forced mean curvature flow (MCF). By imposing conditions associated with the mean curvature of the initial hypersurface and the coefficient function of the forcing term of a forced MCF, and some special pinching conditions on the second fundamental form of the initial hypersurface, we prove that the first nonzero closed eigenvalues of the Laplace operator and the p-Laplace operator are monotonic under the forced MCF, respectively, which partially generalize Mao and Zhao’s work. Moreover, we give an example to specify applications of conclusions obtained above.


Author(s):  
Murat Kemal Karacan ◽  
Dae Won Yoon ◽  
Nural Yuksel

AbstractIn this paper, we classify two types ruled surfaces in the three dimensional simply isotropic space I13under the condition ∆xi= λixiwhere ∆ is the Laplace operator with respect to the first fundamental form and λ is a real number. We also give explicit forms of these surfaces.


Sign in / Sign up

Export Citation Format

Share Document