A Coupled System of Caputo-Type Sequential Fractional Differential Equations with Coupled (Periodic/Anti-periodic Type) Boundary Conditions

Author(s):  
Bashir Ahmad ◽  
Juan J. Nieto ◽  
Ahmed Alsaedi ◽  
Mohammed H. Aqlan
2021 ◽  
Vol 5 (4) ◽  
pp. 162
Author(s):  
Ayub Samadi ◽  
Cholticha Nuchpong ◽  
Sotiris K. Ntouyas ◽  
Jessada Tariboon

In this paper, the existence and uniqueness of solutions for a coupled system of ψ-Hilfer type sequential fractional differential equations supplemented with nonlocal integro-multi-point boundary conditions is investigated. The presented results are obtained via the classical Banach and Krasnosel’skiĭ’s fixed point theorems and the Leray–Schauder alternative. Examples are included to illustrate the effectiveness of the obtained results.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Haiyan Zhang ◽  
Yaohong Li ◽  
Jingbao Yang

In this paper, we introduce new sequential fractional differential equations with mixed-type boundary conditions CDq+kCDq−1ut=ft,ut,CDq−1ut,t∈0,1,α1u0+β1u1+γ1Iruη=ε1,η∈0,1,α2u′0+β2u′1+γ2Iru′η=ε2, where q∈1,2 is a real number, k,r>0,αi,βi,γi,εi∈ℝ,i=1,2,CDq is the Caputo fractional derivative, and the boundary conditions include antiperiodic and Riemann-Liouville fractional integral boundary value cases. Our approach to treat the above problem is based upon standard tools of fixed point theory and some new inequalities of norm form. Some existence results are obtained and well illustrated through the aid of examples.


Open Physics ◽  
2013 ◽  
Vol 11 (10) ◽  
Author(s):  
Bashir Ahmad ◽  
Ahmed Alsaedi ◽  
Hana Al-Hutami

AbstractThis paper investigates the existence of solutions for a nonlinear boundary value problem of sequential fractional differential equations with four-point nonlocal Riemann-Liouville type fractional integral boundary conditions. We apply Banach’s contraction principle and Krasnoselskii’s fixed point theorem to establish the existence of results. Some illustrative examples are also presented.


2020 ◽  
Vol 4 (2) ◽  
pp. 13 ◽  
Author(s):  
Shorog Aljoudi ◽  
Bashir Ahmad ◽  
Ahmed Alsaedi

In this paper, we study a coupled system of Caputo-Hadamard type sequential fractional differential equations supplemented with nonlocal boundary conditions involving Hadamard fractional integrals. The sufficient criteria ensuring the existence and uniqueness of solutions for the given problem are obtained. We make use of the Leray-Schauder alternative and contraction mapping principle to derive the desired results. Illustrative examples for the main results are also presented.


Sign in / Sign up

Export Citation Format

Share Document