On Hyers–Ulam Stability for Fractional Differential Equations Including the New Caputo–Fabrizio Fractional Derivative

Author(s):  
Yasemin Başcı ◽  
Süleyman Öğrekçi ◽  
Adil Mısır
Analysis ◽  
2018 ◽  
Vol 38 (1) ◽  
pp. 37-46 ◽  
Author(s):  
Mohammad Hossein Derakhshan ◽  
Alireza Ansari

AbstractIn this article, we study the Hyers–Ulam stability of the linear and nonlinear fractional differential equations with the Prabhakar derivative. By using the Laplace transform, we show that the introduced fractional differential equations with the Prabhakar fractional derivative is Hyers–Ulam stable. The results generalize the stability of ordinary and fractional differential equations in the Riemann–Liouville sense.


Filomat ◽  
2018 ◽  
Vol 32 (15) ◽  
pp. 5265-5274 ◽  
Author(s):  
Raad Ameen ◽  
Fahd Jarad ◽  
Thabet Abdeljawad

The objective of this paper is to extend Ulam-Hyers stability and Ulam-Hyers-Rassias stability theory to differential equations with delay and in the frame of a certain class of a generalized Caputo fractional derivative with dependence on a kernel function. We discuss the conditions such delay generalized Caputo fractional differential equations should satisfy to be stable in the sense of Ulam-Hyers and Ulam-Hyers-Rassias. To demonstrate our results two examples are presented.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Abdelkrim Salim ◽  
Mouffak Benchohra ◽  
Erdal Karapınar ◽  
Jamal Eddine Lazreg

Abstract In this manuscript, we examine the existence and the Ulam stability of solutions for a class of boundary value problems for nonlinear implicit fractional differential equations with instantaneous impulses in Banach spaces. The results are based on fixed point theorems of Darbo and Mönch associated with the technique of measure of noncompactness. We provide some examples to indicate the applicability of our results.


2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Bin Zheng ◽  
Qinghua Feng

Some new Gronwall-Bellman type inequalities are presented in this paper. Based on these inequalities, new explicit bounds for the related unknown functions are derived. The inequalities established can also be used as a handy tool in the research of qualitative as well as quantitative analysis for solutions to some fractional differential equations defined in the sense of the modified Riemann-Liouville fractional derivative. For illustrating the validity of the results established, we present some applications for them, in which the boundedness, uniqueness, and continuous dependence on the initial value for the solutions to some certain fractional differential and integral equations are investigated.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Khalid Hattaf

This paper aims to study the stability of fractional differential equations involving the new generalized Hattaf fractional derivative which includes the most types of fractional derivatives with nonsingular kernels. The stability analysis is obtained by means of the Lyapunov direct method. First, some fundamental results and lemmas are established in order to achieve the goal of this study. Furthermore, the results related to exponential and Mittag–Leffler stability existing in recent studies are extended and generalized. Finally, illustrative examples are presented to show the applicability of our main results in some areas of science and engineering.


Sign in / Sign up

Export Citation Format

Share Document