scholarly journals Controllability and Hyers-Ulam stability results of initial value problems for fractional differential equations via generalized proportional-Caputo fractional derivative

2021 ◽  
Vol 22 (2) ◽  
pp. 491
Author(s):  
Mohamed I. Abbas
2021 ◽  
Vol 24 (4) ◽  
pp. 1220-1230
Author(s):  
Mohammed Al-Refai

Abstract In this paper, we formulate and prove two maximum principles to nonlinear fractional differential equations. We consider a fractional derivative operator with Mittag-Leffler function of two parameters in the kernel. These maximum principles are used to establish a pre-norm estimate of solutions, and to derive certain uniqueness and positivity results to related linear and nonlinear fractional initial value problems.


Filomat ◽  
2018 ◽  
Vol 32 (15) ◽  
pp. 5265-5274 ◽  
Author(s):  
Raad Ameen ◽  
Fahd Jarad ◽  
Thabet Abdeljawad

The objective of this paper is to extend Ulam-Hyers stability and Ulam-Hyers-Rassias stability theory to differential equations with delay and in the frame of a certain class of a generalized Caputo fractional derivative with dependence on a kernel function. We discuss the conditions such delay generalized Caputo fractional differential equations should satisfy to be stable in the sense of Ulam-Hyers and Ulam-Hyers-Rassias. To demonstrate our results two examples are presented.


2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Bin Zheng ◽  
Qinghua Feng

Some new Gronwall-Bellman type inequalities are presented in this paper. Based on these inequalities, new explicit bounds for the related unknown functions are derived. The inequalities established can also be used as a handy tool in the research of qualitative as well as quantitative analysis for solutions to some fractional differential equations defined in the sense of the modified Riemann-Liouville fractional derivative. For illustrating the validity of the results established, we present some applications for them, in which the boundedness, uniqueness, and continuous dependence on the initial value for the solutions to some certain fractional differential and integral equations are investigated.


Author(s):  
Mohamed I. Abbas

This paper is devoted to initial value problems for impulsive fractional differential equations of Caputo–Fabrizio type fractional derivative. By means of Banach’s fixed point theorem and Schaefer’s fixed point theorem, the existence and uniqueness results are obtained. Finally, an example is given to illustrate one of the main results.


Sign in / Sign up

Export Citation Format

Share Document