scholarly journals Stability of Fractional Differential Equations with New Generalized Hattaf Fractional Derivative

2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Khalid Hattaf

This paper aims to study the stability of fractional differential equations involving the new generalized Hattaf fractional derivative which includes the most types of fractional derivatives with nonsingular kernels. The stability analysis is obtained by means of the Lyapunov direct method. First, some fundamental results and lemmas are established in order to achieve the goal of this study. Furthermore, the results related to exponential and Mittag–Leffler stability existing in recent studies are extended and generalized. Finally, illustrative examples are presented to show the applicability of our main results in some areas of science and engineering.

Author(s):  
Ali El Mfadel ◽  
Said Melliani ◽  
M’hamed Elomari

In this paper, we present and establish a new result on the stability analysis of solutions for fuzzy nonlinear fractional differential equations by extending Lyapunov’s direct method from the fuzzy ordinary case to the fuzzy fractional case. As an application, several examples are presented to illustrate the proposed stability result.


2011 ◽  
Vol 2011 ◽  
pp. 1-12 ◽  
Author(s):  
H. Saberi Najafi ◽  
A. Refahi Sheikhani ◽  
A. Ansari

We analyze the stability of three classes of distributed order fractional differential equations (DOFDEs) with respect to the nonnegative density function. In this sense, we discover a robust stability condition for these systems based on characteristic function and new inertia concept of a matrix with respect to the density function. Moreover, we check the stability of a distributed order fractional WINDMI system to illustrate the validity of proposed procedure.


Author(s):  
Rawid Banchuin

In this chapter, the authors report their work on the application of fractional derivative to the study of the memristor dynamic where the effects of the parasitic fractional elements of the memristor have been studied. The fractional differential equations of the memristor and the memristor-based circuits under the effects of the parasitic fractional elements have been formulated and solved both analytically and numerically. Such effects of the parasitic fractional elements have been studied via the simulations based on the obtained solutions where many interesting results have been proposed in the work. For example, it has been found that the parasitic fractional elements cause both charge and flux decay of the memristor and the impasse point breaking of the phase portraits between flux and charge of the memristor-based circuits similarly to the conventional parasitic elements. The effects of the order and the nonlinearity of the parasitic fractional elements have also been reported.


2018 ◽  
Vol 13 (1) ◽  
pp. 13 ◽  
Author(s):  
H. Yépez-Martínez ◽  
J.F. Gómez-Aguilar

Analytical and numerical simulations of nonlinear fractional differential equations are obtained with the application of the homotopy perturbation transform method and the fractional Adams-Bashforth-Moulton method. Fractional derivatives with non singular Mittag-Leffler function in Liouville-Caputo sense and the fractional derivative of Liouville-Caputo type are considered. Some examples have been presented in order to compare the results obtained, classical behaviors are recovered when the derivative order is 1.


2020 ◽  
Vol 2020 ◽  
pp. 1-8 ◽  
Author(s):  
MohammadHossein Derakhshan ◽  
Azim Aminataei

In this article, we survey the Lyapunov direct method for distributed-order nonlinear time-varying systems with the Prabhakar fractional derivatives. We provide various ways to determine the stability or asymptotic stability for these types of fractional differential systems. Some examples are applied to determine the stability of certain distributed-order systems.


Mathematics ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 2166
Author(s):  
Tofigh Allahviranloo ◽  
Zahra Noeiaghdam ◽  
Samad Noeiaghdam ◽  
Juan J. Nieto

In this field of research, in order to solve fuzzy fractional differential equations, they are normally transformed to their corresponding crisp problems. This transformation is called the embedding method. The aim of this paper is to present a new direct method to solve the fuzzy fractional differential equations using fuzzy calculations and without this transformation. In this work, the fuzzy generalized Taylor expansion by using the sense of fuzzy Caputo fractional derivative for fuzzy-valued functions is presented. For solving fuzzy fractional differential equations, the fuzzy generalized Euler’s method is introduced and applied. In order to show the accuracy and efficiency of the presented method, the local and global truncation errors are determined. Moreover, the consistency, convergence, and stability of the generalized Euler’s method are proved in detail. Eventually, the numerical examples, especially in the switching point case, show the flexibility and the capability of the presented method.


2021 ◽  
Vol 5 (3) ◽  
pp. 121
Author(s):  
Zaid Odibat ◽  
Dumitru Baleanu

In this paper, we introduce a new Caputo-type modification of the Erdélyi–Kober fractional derivative. We pay attention to how to formulate representations of Erdélyi–Kober fractional integral and derivatives operators. Then, some properties of the new modification and relationships with other Erdélyi–Kober fractional derivatives are derived. In addition, a numerical method is presented to deal with fractional differential equations involving the proposed Caputo-type Erdélyi–Kober fractional derivative. We hope the presented method will be widely applied to simulate such fractional models.


Analysis ◽  
2018 ◽  
Vol 38 (1) ◽  
pp. 37-46 ◽  
Author(s):  
Mohammad Hossein Derakhshan ◽  
Alireza Ansari

AbstractIn this article, we study the Hyers–Ulam stability of the linear and nonlinear fractional differential equations with the Prabhakar derivative. By using the Laplace transform, we show that the introduced fractional differential equations with the Prabhakar fractional derivative is Hyers–Ulam stable. The results generalize the stability of ordinary and fractional differential equations in the Riemann–Liouville sense.


2020 ◽  
Vol 5 (1) ◽  
pp. 171-188 ◽  
Author(s):  
Esin İlhan ◽  
İ. Onur Kıymaz

AbstractIn this paper, our aim is to generalize the truncated M-fractional derivative which was recently introduced [Sousa and de Oliveira, A new truncated M-fractional derivative type unifying some fractional derivative types with classical properties, Inter. of Jour. Analy. and Appl., 16 (1), 83–96, 2018]. To do that, we used generalized M-series, which has a more general form than Mittag-Leffler and hypergeometric functions. We called this generalization as truncated ℳ-series fractional derivative. This new derivative generalizes several fractional derivatives and satisfies important properties of the integer-order derivatives. Finally, we obtain the analytical solutions of some ℳ-series fractional differential equations.


Sign in / Sign up

Export Citation Format

Share Document