scholarly journals Enclosure and non-existence theorems for area stationary currents and currents with mean curvature vector

2020 ◽  
Vol 115 (2) ◽  
pp. 215-228
Author(s):  
Patrick Henkemeyer
2020 ◽  
Vol 51 (4) ◽  
pp. 313-332
Author(s):  
Firooz Pashaie

A well-known conjecture of Bang Yen-Chen says that the only biharmonic Euclidean submanifolds are minimal ones. In this paper, we consider an extended condition (namely, $L_1$-biharmonicity) on non-degenerate timelike hypersurfaces of the pseudo-Euclidean space $E_1^4$. A Lorentzian hypersurface $x: M_1^3\rightarrow\E_1^4$ is called $L_1$-biharmonic if it satisfies the condition $L_1^2x=0$, where $L_1$ is the linearized operator associated to the first variation of 2-th mean curvature vector field on $M_1^3$. According to the multiplicities of principal curvatures, the $L_1$-extension of Chen's conjecture is affirmed for Lorentzian hypersurfaces with constant ordinary mean curvature in pseudo-Euclidean space $E_1^4$. Additionally, we show that there is no proper $L_1$-biharmonic $L_1$-finite type connected orientable Lorentzian hypersurface in $E_1^4$.


1993 ◽  
Vol 16 (2) ◽  
pp. 405-408
Author(s):  
M. A. Bashir

LetMbe a compact3-dimensional totally umbilicalCR-submanifold of a Kaehler manifold of positive holomorphic sectional curvature. We prove that if the length of the mean curvature vector ofMdoes not vanish, thenMis either diffeomorphic toS3orRP3or a lens spaceLp,q3.


Author(s):  
Chongzhen Ouyang ◽  
Zhenqi Li

AbstractThis paper investigates complete space-like submainfold with parallel mean curvature vector in the de Sitter space. Some pinching theorems on square of the norm of the second fundamental form are given


1985 ◽  
Vol 100 ◽  
pp. 135-143 ◽  
Author(s):  
Kazuyuki Enomoto

Let ϕ: M → RN be an isometric imbedding of a compact, connected surface M into a Euclidean space RN. ψ is said to be umbilical at a point p of M if all principal curvatures are equal for any normal direction. It is known that if the Euler characteristic of M is not zero and N = 3, then ψ is umbilical at some point on M. In this paper we study umbilical points of surfaces of higher codimension. In Theorem 1, we show that if M is homeomorphic to either a 2-sphere or a 2-dimensional projective space and if the normal connection of ψ is flat, then ψ is umbilical at some point on M. In Section 2, we consider a surface M whose Gaussian curvature is positive constant. If the surface is compact and N = 3, Liebmann’s theorem says that it must be a round sphere. However, if N ≥ 4, the surface is not rigid: For any isometric imbedding Φ of R3 into R4 Φ(S2(r)) is a compact surface of constant positive Gaussian curvature 1/r2. We use Theorem 1 to show that if the normal connection of ψ is flat and the length of the mean curvature vector of ψ is constant, then ψ(M) is a round sphere in some R3 ⊂ RN. When N = 4, our conditions on ψ is satisfied if the mean curvature vector is parallel with respect to the normal connection. Our theorem fails if the surface is not compact, while the corresponding theorem holds locally for a surface with parallel mean curvature vector (See Remark (i) in Section 3).


2012 ◽  
Vol 45 (3) ◽  
pp. 645-654
Author(s):  
Jing Mao ◽  
Shaodong Qin

AbstractConsider submanifolds in the nested space. For a compact pseudoumbilical submanifold with parallel mean curvature vector of a Riemannian submanifold with constant curvature immersed in a quasi-constant curvature Riemannian manifold, two sufficient conditions are given to let the pseudo-umbilical submanifold become a totally umbilical submanifold.


Mathematics ◽  
2019 ◽  
Vol 7 (8) ◽  
pp. 710 ◽  
Author(s):  
Bang-Yen Chen

The well known Chen’s conjecture on biharmonic submanifolds in Euclidean spaces states that every biharmonic submanifold in a Euclidean space is a minimal one. For hypersurfaces, we know from Chen and Jiang that the conjecture is true for biharmonic surfaces in E 3 . Also, Hasanis and Vlachos proved that biharmonic hypersurfaces in E 4 ; and Dimitric proved that biharmonic hypersurfaces in E m with at most two distinct principal curvatures. Chen and Munteanu showed that the conjecture is true for δ ( 2 ) -ideal and δ ( 3 ) -ideal hypersurfaces in E m . Further, Fu proved that the conjecture is true for hypersurfaces with three distinct principal curvatures in E m with arbitrary m. In this article, we provide another solution to the conjecture, namely, we prove that biharmonic surfaces do not exist in any Euclidean space with parallel normalized mean curvature vectors.


Sign in / Sign up

Export Citation Format

Share Document