lens space
Recently Published Documents


TOTAL DOCUMENTS

96
(FIVE YEARS 13)

H-INDEX

13
(FIVE YEARS 0)

2021 ◽  
Vol 29 (6) ◽  
pp. 863-868
Author(s):  
Danila Shubin ◽  
◽  

The purpose of this study is to establish the topological properties of three-dimensional manifolds which admit Morse – Smale flows without fixed points (non-singular or NMS-flows) and give examples of such manifolds that are not lens spaces. Despite the fact that it is known that any such manifold is a union of circular handles, their topology can be investigated additionally and refined in the case of a small number of orbits. For example, in the case of a flow with two non-twisted (having a tubular neighborhood homeomorphic to a solid torus) orbits, the topology of such manifolds is established exactly: any ambient manifold of an NMS-flow with two orbits is a lens space. Previously, it was believed that all prime manifolds admitting NMS-flows with at most three non-twisted orbits have the same topology. Methods. In this paper, we consider suspensions over Morse – Smale diffeomorphisms with three periodic orbits. These suspensions, in turn, are NMS-flows with three periodic trajectories. Universal coverings of the ambient manifolds of these flows and lens spaces are considered. Results. In this paper, we present a countable set of pairwise distinct simple 3-manifolds admitting NMS-flows with exactly three non-twisted orbits. Conclusion. From the results of this paper it follows that there is a countable set of pairwise distinct three-dimensional manifolds other than lens spaces, which refutes the previously published result that any simple orientable manifold admitting an NMS-flow with at most three orbits is lens space.



2021 ◽  
Vol 104 (2) ◽  
Author(s):  
Kushal Chakraborty ◽  
Suvankar Dutta


Author(s):  
ZHONGTAO WU ◽  
JINGLING YANG
Keyword(s):  

Abstract In this paper, we study distance one surgeries between lens spaces L(p, 1) with p ≥ 5 prime and lens spaces L(n, 1) for $$n \in \mathbb{Z}$$ and band surgeries from T (2, p) to T (2, n). In particular, we prove that L(n, 1) is obtained by a distance one surgery from L(5, 1) only if n=±1, 4, ±5, 6 or ±9, and L(n, 1) is obtained by a distance one surgery from L(7, 1) if and only if n=±1, 3, 6, 7, 8 or 11.



2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
James Lucietti ◽  
Fred Tomlinson

Abstract We demonstrate that five-dimensional, asymptotically flat, stationary and bi-axisymmetric, vacuum black holes with lens space L(n, 1) topology, possessing the simplest rod structure, do not exist. In particular, we show that the general solution on the axes and horizon, which we recently constructed by exploiting the integrability of this system, must suffer from a conical singularity on the inner axis component. We give a proof of this for two distinct singly spinning configurations and numerical evidence for the generic doubly spinning solution.



Author(s):  
Steven Sivek ◽  
Raphael Zentner

Abstract We classify $SU(2)$-cyclic and $SU(2)$-abelian 3-manifolds, for which every representation of the fundamental group into $SU(2)$ has cyclic or abelian image, respectively, among geometric 3-manifolds that are not hyperbolic. As an application, we give examples of hyperbolic 3-manifolds that do not admit degree-1 maps to any Seifert Fibered manifold other than $S^3$ or a lens space. We also produce infinitely many one-cusped hyperbolic manifolds with at least four $SU(2)$-cyclic Dehn fillings, one more than the number of cyclic fillings allowed by the cyclic surgery theorem.



Author(s):  
Eva Horvat

The lens space [Formula: see text] is the orbit space of a [Formula: see text]-action on the 3-sphere. We investigate polynomials of two complex variables that are invariant under this action, and thus define links in [Formula: see text]. We study properties of these links, and their relationship with the classical algebraic links. We prove that all algebraic links in lens spaces are fibered, and obtain results about their Seifert genus. We find some examples of algebraic knots in [Formula: see text], whose lift in the [Formula: see text]-sphere is a torus link.



2020 ◽  
Vol 29 (10) ◽  
pp. 2042005
Author(s):  
Fengling Li ◽  
Dongxu Wang ◽  
Liang Liang ◽  
Fengchun Lei

In the paper, we give an equivalent description of the lens space [Formula: see text] with [Formula: see text] prime in terms of any corresponding Heegaard diagrams as follows: Let [Formula: see text] be a closed orientable 3-manifold with [Formula: see text] and [Formula: see text] a Heegaard splitting of genus [Formula: see text] for [Formula: see text] with an associated Heegaard diagram [Formula: see text]. Assume [Formula: see text] is a prime integer. Then [Formula: see text] is homeomorphic to the lens space [Formula: see text] if and only if there exists an embedding [Formula: see text] such that [Formula: see text] bounds a complete system of surfaces for [Formula: see text].



Author(s):  
John Kalliongis ◽  
Ryo Ohashi

In this paper, we classify the smooth orientation preserving cyclic [Formula: see text]-group actions on the real projective space [Formula: see text] up equivalence, where two actions are equivalent if their images are conjugate in the group of self-diffeomorphisms. We view [Formula: see text] as the lens space [Formula: see text]. We show that any such action on [Formula: see text] is conjugate to a standard action explicitly defined, and we identify the quotient spaces of these actions. In addition, we enumerate the equivalence classes.



2020 ◽  
Vol 275 ◽  
pp. 107124
Author(s):  
Motoo Tange




Sign in / Sign up

Export Citation Format

Share Document