scholarly journals Products of locally cyclic groups

Author(s):  
Bernhard Amberg ◽  
Yaroslav Sysak

AbstractWe consider groups of the form $${G} = {AB}$$ G = AB with two locally cyclic subgroups A and B. The structure of these groups is determined in the cases when A and B are both periodic or when one of them is periodic and the other is not. Together with a previous study of the case where A and B are torsion-free, this gives a complete classification of all groups that are the product of two locally cyclic subgroups. As an application, it is shown that the Prüfer rank of a periodic product of two locally cyclic subgroups does not exceed 3, and this bound is sharp. It is also proved that a product of a finite number of pairwise permutable periodic locally cyclic subgroups is a locally supersoluble group. This generalizes a well-known theorem of B. Huppert for finite groups.

Author(s):  
Ingrid Bauer ◽  
Christian Gleissner

AbstractIn this paper the authors study quotients of the product of elliptic curves by a rigid diagonal action of a finite group G. It is shown that only for $$G = {{\,\mathrm{He}\,}}(3), {\mathbb {Z}}_3^2$$ G = He ( 3 ) , Z 3 2 , and only for dimension $$\ge 4$$ ≥ 4 such an action can be free. A complete classification of the singular quotients in dimension 3 and the smooth quotients in dimension 4 is given. For the other finite groups a strong structure theorem for rigid quotients is proven.


2018 ◽  
Vol 17 (10) ◽  
pp. 1850184 ◽  
Author(s):  
Ramesh Prasad Panda ◽  
K. V. Krishna

The power graph of a group [Formula: see text] is the graph whose vertex set is [Formula: see text] and two distinct vertices are adjacent if one is a power of the other. This paper investigates the minimal separating sets of power graphs of finite groups. For power graphs of finite cyclic groups, certain minimal separating sets are obtained. Consequently, a sharp upper bound for their connectivity is supplied. Further, the components of proper power graphs of [Formula: see text]-groups are studied. In particular, the number of components of that of abelian [Formula: see text]-groups are determined.


2019 ◽  
Vol 30 (12) ◽  
pp. 1950068
Author(s):  
Andrey Trepalin

Let [Formula: see text] be any field of characteristic zero, [Formula: see text] be a del Pezzo surface and [Formula: see text] be a finite subgroup in [Formula: see text]. In this paper, we study when the quotient surface [Formula: see text] can be non-rational over [Formula: see text]. Obviously, if there are no smooth [Formula: see text]-points on [Formula: see text] then it is not [Formula: see text]-rational. Therefore, under assumption that the set of smooth [Formula: see text]-points on [Formula: see text] is not empty we show that there are few possibilities for non-[Formula: see text]-rational quotients. The quotients of del Pezzo surfaces of degree [Formula: see text] and greater are considered in the author’s previous papers. In this paper, we study the quotients of del Pezzo surfaces of degree [Formula: see text]. We show that they can be non-[Formula: see text]-rational only for the trivial group or cyclic groups of order [Formula: see text], [Formula: see text] and [Formula: see text]. For the trivial group and the group of order [Formula: see text], we show that both [Formula: see text] and [Formula: see text] are not [Formula: see text]-rational if the [Formula: see text]-invariant Picard number of [Formula: see text] is [Formula: see text]. For the groups of order [Formula: see text] and [Formula: see text], we construct examples of both [Formula: see text]-rational and non-[Formula: see text]-rational quotients of both [Formula: see text]-rational and non-[Formula: see text]-rational del Pezzo surfaces of degree [Formula: see text] such that the [Formula: see text]-invariant Picard number of [Formula: see text] is [Formula: see text]. As a result of complete classification of non-[Formula: see text]-rational quotients of del Pezzo surfaces we classify surfaces that are birationally equivalent to quotients of [Formula: see text]-rational surfaces, and obtain some corollaries concerning fields of invariants of [Formula: see text].


2017 ◽  
Vol 15 (1) ◽  
pp. 611-615 ◽  
Author(s):  
Li Ma ◽  
Wei Meng ◽  
Wanqing Ma

Abstract In this paper, we give a complete classification of the finite groups G whose second maximal subgroups are cyclic


1962 ◽  
Vol 58 (3) ◽  
pp. 465-475
Author(s):  
J. Herszberg

Singular points on irreducible primals were investigated briefly by C. Segre(8), where the author classified multiple points by the nature of the nodal tangent cone. For surfaces the problem of classification was investigated by, amongst others, Du Val(1) and a complete classification of isolated double points of surfaces lying on non-singular threefolds was given by Kirby(5). In (3) we classified certain types of double points on algebraic primals in Sn. An isolated double point which after a finite number of resolutions gave rise to at most a finite number of isolated double points was called a double point of rank zero. We found that the only isolated double points of rank zero are those which are analogous to the binodes, unodes and exceptional unodes (2) of surfaces.


2017 ◽  
Vol 16 (03) ◽  
pp. 1750051 ◽  
Author(s):  
Jiangtao Shi ◽  
Wei Meng ◽  
Cui Zhang

Let [Formula: see text] be a finite group and [Formula: see text] any divisor of [Formula: see text], the order of [Formula: see text]. Let [Formula: see text], Frobenius’ theorem states that [Formula: see text] for some positive integer [Formula: see text]. We call [Formula: see text] a Frobenius quotient of [Formula: see text] for [Formula: see text]. Let [Formula: see text] be the set of all Frobenius quotients of [Formula: see text], we call [Formula: see text] the Frobenius spectrum of [Formula: see text]. In this paper, we give a complete classification of finite groups [Formula: see text] with [Formula: see text] for [Formula: see text] being the smallest prime divisor of [Formula: see text]. Moreover, let [Formula: see text] be a finite group of even order, [Formula: see text] the set of all Frobenius quotients of [Formula: see text] for even divisors of [Formula: see text] and [Formula: see text] the maximum Frobenius quotient in [Formula: see text], we prove that [Formula: see text] is always solvable if [Formula: see text] or [Formula: see text] and [Formula: see text] is not a composition factor of [Formula: see text].


1986 ◽  
Vol 29 (2) ◽  
pp. 197-203
Author(s):  
Shalom Feigelstock

AbstractThe abelian groups which are the additive groups of only finitely many non-isomorphic (associative) nilpotent rings are studied. Progress is made toward a complete classification of these groups. In the torsion free case, the actual number of non-isomorphic nilpotent rings these groups support is obtained.


1925 ◽  
Vol 22 (5) ◽  
pp. 726-727 ◽  
Author(s):  
W. Burnside

A statistical table is in effect a classification of a finite number, N, of objects in respect of a finite number of different classes, A, B, C, … It is assumed that unambiguous rules have been laid down by which it is possible to determine whether any particular one of the objects does or does not belong to any particular one of the classes. The application of these rules to a particular object does not depend on the fact that that object is one of a finite number of N objects, so that the process of classification may be started on a non-finite collection of objects. When the collection of objects is non-finite the process can never end. On the other hand when the collection is finite the process must end; and when completed it will determine how many of the objects belong to any particular class. If in this way it is found that N1 (≤ N) of the objects belong to class A, the proper fraction N1/N is spoken of as the frequency of class A in the collection. In particular cases it may be zero or unity. In general it is a rational proper fraction. For its determination in complicated cases it may be convenient to suppose the collection to be arranged in some special way, but its value is absolutely independent of any such particular arrangement.


2013 ◽  
Vol 20 (03) ◽  
pp. 457-462 ◽  
Author(s):  
Jiangtao Shi ◽  
Cui Zhang ◽  
Dengfeng Liang

Let [Formula: see text] be the class of groups of non-prime-power order or the class of groups of prime-power order. In this paper we give a complete classification of finite non-solvable groups with a quite small number of conjugacy classes of [Formula: see text]-subgroups or classes of [Formula: see text]-subgroups of the same order.


2002 ◽  
Vol 45 (2) ◽  
pp. 180-195 ◽  
Author(s):  
Francis X. Connolly ◽  
Stratos Prassidis

AbstractIt is known that the K-theory of a large class of groups can be computed from the K-theory of their virtually infinite cyclic subgroups. On the other hand, Nil-groups appear to be the obstacle in calculations involving the K-theory of the latter. The main difficulty in the calculation of Nil-groups is that they are infinitely generated when they do not vanish. We develop methods for computing the exponent of NK0-groups that appear in the calculation of the K0-groups of virtually infinite cyclic groups.


Sign in / Sign up

Export Citation Format

Share Document