scholarly journals Finite groups whose all second maximal subgroups are cyclic

2017 ◽  
Vol 15 (1) ◽  
pp. 611-615 ◽  
Author(s):  
Li Ma ◽  
Wei Meng ◽  
Wanqing Ma

Abstract In this paper, we give a complete classification of the finite groups G whose second maximal subgroups are cyclic


Author(s):  
Ingrid Bauer ◽  
Christian Gleissner

AbstractIn this paper the authors study quotients of the product of elliptic curves by a rigid diagonal action of a finite group G. It is shown that only for $$G = {{\,\mathrm{He}\,}}(3), {\mathbb {Z}}_3^2$$ G = He ( 3 ) , Z 3 2 , and only for dimension $$\ge 4$$ ≥ 4 such an action can be free. A complete classification of the singular quotients in dimension 3 and the smooth quotients in dimension 4 is given. For the other finite groups a strong structure theorem for rigid quotients is proven.



2017 ◽  
Vol 16 (03) ◽  
pp. 1750051 ◽  
Author(s):  
Jiangtao Shi ◽  
Wei Meng ◽  
Cui Zhang

Let [Formula: see text] be a finite group and [Formula: see text] any divisor of [Formula: see text], the order of [Formula: see text]. Let [Formula: see text], Frobenius’ theorem states that [Formula: see text] for some positive integer [Formula: see text]. We call [Formula: see text] a Frobenius quotient of [Formula: see text] for [Formula: see text]. Let [Formula: see text] be the set of all Frobenius quotients of [Formula: see text], we call [Formula: see text] the Frobenius spectrum of [Formula: see text]. In this paper, we give a complete classification of finite groups [Formula: see text] with [Formula: see text] for [Formula: see text] being the smallest prime divisor of [Formula: see text]. Moreover, let [Formula: see text] be a finite group of even order, [Formula: see text] the set of all Frobenius quotients of [Formula: see text] for even divisors of [Formula: see text] and [Formula: see text] the maximum Frobenius quotient in [Formula: see text], we prove that [Formula: see text] is always solvable if [Formula: see text] or [Formula: see text] and [Formula: see text] is not a composition factor of [Formula: see text].



2013 ◽  
Vol 20 (03) ◽  
pp. 457-462 ◽  
Author(s):  
Jiangtao Shi ◽  
Cui Zhang ◽  
Dengfeng Liang

Let [Formula: see text] be the class of groups of non-prime-power order or the class of groups of prime-power order. In this paper we give a complete classification of finite non-solvable groups with a quite small number of conjugacy classes of [Formula: see text]-subgroups or classes of [Formula: see text]-subgroups of the same order.



Author(s):  
Bernhard Amberg ◽  
Yaroslav Sysak

AbstractWe consider groups of the form $${G} = {AB}$$ G = AB with two locally cyclic subgroups A and B. The structure of these groups is determined in the cases when A and B are both periodic or when one of them is periodic and the other is not. Together with a previous study of the case where A and B are torsion-free, this gives a complete classification of all groups that are the product of two locally cyclic subgroups. As an application, it is shown that the Prüfer rank of a periodic product of two locally cyclic subgroups does not exceed 3, and this bound is sharp. It is also proved that a product of a finite number of pairwise permutable periodic locally cyclic subgroups is a locally supersoluble group. This generalizes a well-known theorem of B. Huppert for finite groups.



2016 ◽  
Vol 15 (08) ◽  
pp. 1650140
Author(s):  
R. Esteban-Romero ◽  
Orieta Liriano

We give a complete classification of the finite groups with a unique subgroup of order [Formula: see text] for each prime [Formula: see text] dividing its order.



Author(s):  
Jakub Konieczny ◽  
Mariusz Lemańczyk ◽  
Clemens Müllner

AbstractWe obtain a complete classification of complex-valued sequences which are both multiplicative and automatic.



2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Alexey Sharapov ◽  
Evgeny Skvortsov

Abstract We give a complete classification of dynamical invariants in 3d and 4d Higher Spin Gravity models, with some comments on arbitrary d. These include holographic correlation functions, interaction vertices, on-shell actions, conserved currents, surface charges, and some others. Surprisingly, there are a good many conserved p-form currents with various p. The last fact, being in tension with ‘no nontrivial conserved currents in quantum gravity’ and similar statements, gives an indication of hidden integrability of the models. Our results rely on a systematic computation of Hochschild, cyclic, and Chevalley-Eilenberg cohomology for the corresponding higher spin algebras. A new invariant in Chern-Simons theory with the Weyl algebra as gauge algebra is also presented.



2017 ◽  
Vol 16 (10) ◽  
pp. 1750197 ◽  
Author(s):  
Janez Šter

We provide a strong condition holding for nil-clean quadratic elements in any ring. In particular, our result implies that every nil-clean involution in a ring is unipotent. As a consequence, we give a complete classification of weakly nil-clean rings introduced recently in [Breaz, Danchev and Zhou, Rings in which every element is either a sum or a difference of a nilpotent and an idempotent, J. Algebra Appl. 15 (2016) 1650148, doi: 10.1142/S0219498816501486].



Sign in / Sign up

Export Citation Format

Share Document