Factorisation of Non-negative Fredholm Operators and Inverse Spectral Problems for Bessel Operators

2009 ◽  
Vol 64 (3) ◽  
pp. 301-323 ◽  
Author(s):  
S. Albeverio ◽  
R. Hryniv ◽  
Ya Mykytyuk
2019 ◽  
Vol 60 (8) ◽  
pp. 083503
Author(s):  
Yu Liu ◽  
Guoliang Shi ◽  
Jun Yan

2007 ◽  
Vol 241 (1) ◽  
pp. 130-159 ◽  
Author(s):  
S. Albeverio ◽  
R. Hryniv ◽  
Ya. Mykytyuk

2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Yongxia Guo ◽  
Guangsheng Wei ◽  
Ruoxia Yao

Abstract In this paper, we are concerned with the inverse spectral problems for differential pencils defined on $[0,\pi ]$ [ 0 , π ] with an interior discontinuity. We prove that two potential functions are determined uniquely by one spectrum and a set of values of eigenfunctions at some interior point $b\in (0,\pi )$ b ∈ ( 0 , π ) in the situation of $b=\pi /2$ b = π / 2 and $b\neq \pi /2$ b ≠ π / 2 . For the latter, we need the knowledge of a part of the second spectrum.


Sign in / Sign up

Export Citation Format

Share Document