scholarly journals In-Flow and Out-Flow Problem for the Stokes System

2020 ◽  
Vol 22 (4) ◽  
Author(s):  
Bernard Nowakowski ◽  
Gerhard Ströhmer

AbstractWe investigate the existence and regularity of solutions to the stationary Stokes system and non-stationary Navier–Stokes equations in three dimensional bounded domains with in- and out-lets. We assume that on the in- and out-flow parts of the boundary the pressure is prescribed and the tangential component of the velocity field is zero, whereas on the lateral part of the boundary the fluid is at rest.

1982 ◽  
Vol 120 ◽  
pp. 155-183 ◽  
Author(s):  
Jon Lee

We have investigated a sequence of dynamical systems corresponding to spherical truncations of the incompressible three-dimensional Navier-Stokes equations in Fourier space. For lower-order truncated systems up to the spherical truncation of wavenumber radius 4, it is concluded that the inviscid Navier-Stokes system will develop mixing (and a fortiori ergodicity) on the constant energy-helicity surface, and also isotropy of the covariance spectral tensor. This conclusion is, however, drawn not directly from the mixing definition but from the observation that one cannot evolve the trajectory numerically much beyond several characteristic corre- lation times of the smallest eddy owing to the accumulation of round-off errors. The limited evolution time is a manifestation of trajectory instability (exponential orbit separation) which underlies not only mixing, but also the stronger dynamical charac- terization of positive Kolmogorov entropy (K-system).


Author(s):  
James C. Robinson

There is currently no proof guaranteeing that, given a smooth initial condition, the three-dimensional Navier–Stokes equations have a unique solution that exists for all positive times. This paper reviews the key rigorous results concerning the existence and uniqueness of solutions for this model. In particular, the link between the regularity of solutions and their uniqueness is highlighted. This article is part of the theme issue ‘Stokes at 200 (Part 1)’.


2012 ◽  
Vol 53 ◽  
Author(s):  
Kristina Kaulakytė

In this paper the stationary Navier–Stokes system with non-homogeneous boundary condition is studied in domain which consists of two connected layers. The extension of the boundary value, which reduces the non-homogeneous boundary problem to the homogeneous one, is constructed in this paper.


2020 ◽  
Vol 31 (05) ◽  
pp. 2050038
Author(s):  
Jianwei Yang ◽  
Gaohui Peng ◽  
Huiyun Hao ◽  
Fengzhen Que

In this paper, the barotropic compressible quantum Navier–Stokes equations with a density-dependent viscosity in a three-dimensional torus is studied. By introducing a cold pressure to handle the convection term, we prove the global-in-time existence of weak solutions to quantum Navier–Stokes equations for large data in the sense of standard definition.


2012 ◽  
Vol 2012 ◽  
pp. 1-14
Author(s):  
Jian Li ◽  
Xin Zhao ◽  
Jianhua Wu ◽  
Jianhong Yang

This paper proposes and analyzes a stabilized finite-volume method (FVM) for the three-dimensional stationary Navier-Stokes equations approximated by the lowest order finite element pairs. The method studies the new stabilized FVM with the relationship between the stabilized FEM (FEM) and the stabilized FVM under the assumption of the uniqueness condition. The results have three prominent features in this paper. Firstly, the error analysis shows that the stabilized FVM provides an approximate solution with the optimal convergence rate of the same order as the usual stabilized FEM solution solving the stationary Navier-Stokes equations. Secondly, superconvergence results on the solutions of the stabilized FEM and stabilized FVM are derived on theH1-norm and theL2-norm for the velocity and pressure. Thirdly, residual technique is applied to obtain theL2-norm error for the velocity without additional regular assumption on the exact solution.


Sign in / Sign up

Export Citation Format

Share Document