New Characterizations of g-Bessel Sequences and g-Riesz Bases in Hilbert Spaces

2015 ◽  
Vol 68 (3-4) ◽  
pp. 361-374 ◽  
Author(s):  
Xunxiang Guo
Author(s):  
Z. L. Chen ◽  
H. X. Cao ◽  
Z. H. Guo

For Hilbert spaces [Formula: see text] and [Formula: see text], we use the notations [Formula: see text], [Formula: see text] and [Formula: see text] to denote the sets of all [Formula: see text]-Bessel sequences, [Formula: see text]-frames and Riesz bases in [Formula: see text] with respect to [Formula: see text], respectively. By defining a linear operation and a norm, we prove that [Formula: see text] becomes a Banach space and is isometrically isomorphic to the operator space [Formula: see text], where [Formula: see text]. In light of operator theory, it is proved that [Formula: see text] and [Formula: see text] are open sets in [Formula: see text]. This implies that both [Formula: see text]-frames and Riesz bases are stable under a small perturbation. By introducing a linear bijection [Formula: see text] from [Formula: see text] onto the [Formula: see text]-algebra [Formula: see text], a multiplication and an involution on the Banach space [Formula: see text] are defined so that [Formula: see text] becomes a unital [Formula: see text]-algebra that is isometrically isomorphic to the [Formula: see text]-algebra [Formula: see text], provided that [Formula: see text] and [Formula: see text] are isomorphic.


Author(s):  
PETER BALAZS

In this paper we deal with the theory of Hilbert–Schmidt operators, when the usual choice of orthonormal basis, on the associated Hilbert spaces, is replaced by frames. We More precisely, we provide a necessary and sufficient condition for an operator to be Hilbert–Schmidt, based on its action on the elements of a frame (i.e. an operator T is [Formula: see text] if and only if the sum of the squared norms of T applied on the elements of the frame is finite). Also, we construct Bessel sequences, frames and Riesz bases of [Formula: see text] operators using tensor products of the same sequences in the associated Hilbert spaces. We state how the [Formula: see text] inner product of an arbitrary operator and a rank one operator can be calculated in an efficient way; and we use this result to provide a numerically efficient algorithm to find the best approximation, in the Hilbert–Schmidt sense, of an arbitrary matrix, by a so-called frame multiplier (i.e. an operator which act diagonally on the frame analysis coefficients). Finally, we give some simple examples using Gabor and wavelet frames, introducing in this way wavelet multipliers.


Author(s):  
Dongwei Li ◽  
Jinsong Leng ◽  
Tingzhu Huang

In this paper, we give some new characterizations of g-frames, g-Bessel sequences and g-Riesz bases from their topological properties. By using the Gram matrix associated with the g-Bessel sequence, we present a sufficient and necessary condition under which the sequence is a g-Bessel sequence (or g-Riesz basis). Finally, we consider the excess of a g-frame and obtain some new results.


Author(s):  
YONINA C. ELDAR ◽  
TOBIAS WERTHER

We introduce a general framework for consistent linear reconstruction in infinite-dimensional Hilbert spaces. We study stable reconstructions in terms of Riesz bases and frames, and generalize the notion of oblique dual frames to infinite-dimensional frames. As we show, the linear reconstruction scheme coincides with the so-called oblique projection, which turns into an ordinary orthogonal projection when adapting the inner product. The inner product of interest is, in general, not unique. We characterize the inner products and corresponding positive operators for which the new geometrical interpretation applies.


2018 ◽  
Vol 2018 ◽  
pp. 1-6
Author(s):  
Zhong-Qi Xiang

We obtain a new inequality for frames in Hilbert spaces associated with a scalar and a bounded linear operator induced by two Bessel sequences. It turns out that the corresponding results due to Balan et al. and Găvruţa can be deduced from our result.


Author(s):  
YONINA C. ELDAR ◽  
TOBIAS WERTHER

We introduce a general framework for consistent linear reconstruction in infinite-dimensional Hilbert spaces. We study stable reconstructions in terms of Riesz bases and frames, and generalize the notion of oblique dual frames to infinte-dimensional frames. As we show, the linear reconstruction scheme coincides with the so-called oblique projection, which turns into an ordinary orthogonal projection when adapting the inner product. The inner product of interest is, in general, not unique. We characterize the inner products and the corresponding positive operators for which this geometrical interpretation applies.


2015 ◽  
Vol 2015 ◽  
pp. 1-7
Author(s):  
Xunxiang Guo

Firstly, we study the representation ofg-frames in terms of linear combinations of simpler ones such asg-orthonormal bases,g-Riesz bases, and normalized tightg-frames. Then, we study the dual and pseudodual ofg-frames, which are critical components in reconstructions. In particular, we characterize the dualg-frames in a constructive way; that is, the formulae for dualg-frames are given. We also give someg-frame like representations for pseudodualg-frame pairs. The operator parameterizations ofg-frames and decompositions of bounded operators are the key tools to prove our main results.


2013 ◽  
Vol 21 (2) ◽  
pp. 223-236 ◽  
Author(s):  
Asghar Rahimi ◽  
Abolhassan Fereydooni

Abstract Multipliers have been recently introduced by P. Balazs as operators for Bessel sequences and frames in Hilbert spaces. These are opera- tors that combine (frame-like) analysis, a multiplication with a fixed sequence ( called the symbol) and synthesis. One of the last extensions of frames is weighted and controlled frames that introduced by P.Balazs, J-P. Antoine and A. Grybos to improve the numerical efficiency of iterative algorithms for inverting the frame operator. Also g-frames are the most popular generalization of frames that include almost all of the frame extensions. In this manuscript the concept of the controlled g- frames will be defined and we will show that controlled g-frames are equivalent to g-frames and so the controlled operators C and C' can be used as preconditions in applications. Also the multiplier operator for this family of operators will be introduced and some of its properties will be shown.


Sign in / Sign up

Export Citation Format

Share Document