scholarly journals On the Navier–Stokes equations on surfaces

Author(s):  
Jan Prüss ◽  
Gieri Simonett ◽  
Mathias Wilke

Abstract We consider the motion of an incompressible viscous fluid that completely covers a smooth, compact and embedded hypersurface $$\Sigma $$ Σ without boundary and flows along $$\Sigma $$ Σ . Local-in-time well-posedness is established in the framework of $$L_p$$ L p -$$L_q$$ L q -maximal regularity. We characterize the set of equilibria as the set of all Killing vector fields on $$\Sigma $$ Σ , and we show that each equilibrium on $$\Sigma $$ Σ is stable. Moreover, it is shown that any solution starting close to an equilibrium exists globally and converges at an exponential rate to a (possibly different) equilibrium as time tends to infinity.

Author(s):  
Jean-Yves Chemin ◽  
Benoit Desjardins ◽  
Isabelle Gallagher ◽  
Emmanuel Grenier

In this chapter we intend to investigate the stability of the Leray solutions constructed in the previous chapter. It is useful to start by analyzing the linearized version of the Navier–Stokes equations, so the first section of the chapter is devoted to the proof of the well-posedness of the time-dependent Stokes system. The study will be applied in Section 3.2 to the two-dimensional Navier–Stokes equations, and the more delicate case of three space dimensions will be dealt with in Sections 3.3–3.5.


Author(s):  
Jean-Yves Chemin ◽  
Benoit Desjardins ◽  
Isabelle Gallagher ◽  
Emmanuel Grenier

Before introducing the concept of Leray’s weak solutions to the incompressible Navier–Stokes equations, classical definitions of Sobolev spaces are required. In particular, when it comes to the analysis of the Stokes operator, suitable functional spaces of incompressible vector fields have to be defined. Several issues regarding the associated dual spaces, embedding properties, and the mathematical way of considering the pressure field are also discussed. Let us first recall the definition of some functional spaces that we shall use throughout this book. In the framework of weak solutions of the Navier– Stokes equations, incompressible vector fields with finite viscous dissipation and the no-slip property on the boundary are considered. Such H1-type spaces of incompressible vector fields, and the corresponding dual spaces, are important ingredients in the analysis of the Stokes operator.


Author(s):  
Zhangming Wu ◽  
Xianghong Ma

The aim of this paper is to study the dynamic characteristics of micromechanical rectangular plates used as sensing elements in a viscous compressible fluid. A novel modelling procedure for the plate–fluid interaction problem is developed on the basis of linearized Navier–Stokes equations and no-slip conditions. Analytical expression for the fluid-loading impedance is obtained using a double Fourier transform approach. This modelling work provides us an analytical means to study the effects of inertial loading, acoustic radiation and viscous dissipation of the fluid acting on the vibration of microplates. The numerical simulation is conducted on microplates with different boundary conditions and fluids with different viscosities. The simulation results reveal that the acoustic radiation dominates the damping mechanism of the submerged microplates. It is also proved that microplates offer better sensitivities (Q-factors) than the conventional beam type microcantilevers being mass sensing platforms in a viscous fluid environment. The frequency response features of microplates under highly viscous fluid loading are studied using the present model. The dynamics of the microplates with all edges clamped are less influenced by the highly viscous dissipation of the fluid than the microplates with other types of boundary conditions.


Sign in / Sign up

Export Citation Format

Share Document