scholarly journals A homogenization approach to flashing ratchets

2010 ◽  
Vol 18 (1) ◽  
pp. 45-58 ◽  
Author(s):  
Benoît Perthame ◽  
Panagiotis E. Souganidis
2006 ◽  
Vol 43 (5) ◽  
pp. 462-483 ◽  
Author(s):  
Henry Wong ◽  
Didier Subrin ◽  
Daniel Dias

The behaviour of tunnels reinforced with radially disposed fully grouted bolts is investigated in this paper. Perfect bonding and ideal diffusion of bolt tension are assumed, so that the bolt tension can be assimilated to an equivalent uniaxial stress tensor. An analytical model of the convergence–confinement type is proposed that accounts for the delayed action of bolts due to ground decompression prior to bolt installation. This factor leads to nonsimultaneous yielding, and more generally, a different stress history for each constituent, requiring special treatments in the incremental elastoplasticity calculations. Nonetheless, the resulting model remains sufficiently simple, and an analytical solution is still accessible. Charts are provided to allow for parametric studies and quick preliminary designs. Comparisons with 3D numerical calculations show that the model gives precise results if the correct convergence at the moment of bolt installation is used as an "external" input parameter, validating the homogenization approach. An approximate methodology based on previous works is proposed to determine this parameter to render the proposed model "self-sufficient." Its predictions are again compared to 3D numerical computations, and the results are found to be sufficiently accurate for practical applications.Key words: reinforcement, anisotropy, analytical, lining, yield, elastoplasticity.


2012 ◽  
Vol 6 (1) ◽  
pp. 148-159
Author(s):  
Jan Sykora ◽  
Jan Zeman ◽  
Michal Ŝejnoha

The paper reviews several topics associated with the homogenization of transport processed in historical ma-sonry structures. Since these often experience an irregular or random pattern, we open the subject by summarizing essen-tial steps in the formulation of a suitable computational model in the form of Statistically Equivalent Periodic Unit Cell (SEPUC). Accepting SEPUC as a reliable representative volume element is supported by application of the Fast Fourier Transform to both the SEPUC and large binary sample of real masonry in search for effective thermal conductivities lim-ited here to a steady state heat conduction problem. Fully coupled non-stationary heat and moisture transport is addressed next in the framework of two-scale first-order homogenization approach with emphases on the application of boundary and initial conditions on the meso-scale.


Sign in / Sign up

Export Citation Format

Share Document