Existence of multiple solutions to Schrödinger–Poisson system in a nonlocal set up in $$\mathbb {R}^3$$

Author(s):  
Debajyoti Choudhuri ◽  
Kamel Saoudi
2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Jing Zhang

AbstractIn this article, we consider the following quasilinear Schrödinger–Poisson system $$ \textstyle\begin{cases} -\Delta u+V(x)u-u\Delta (u^{2})+K(x)\phi (x)u=g(x,u), \quad x\in \mathbb{R}^{3}, \\ -\Delta \phi =K(x)u^{2}, \quad x\in \mathbb{R}^{3}, \end{cases} $$ { − Δ u + V ( x ) u − u Δ ( u 2 ) + K ( x ) ϕ ( x ) u = g ( x , u ) , x ∈ R 3 , − Δ ϕ = K ( x ) u 2 , x ∈ R 3 , where $V,K:\mathbb{R}^{3}\rightarrow \mathbb{R}$ V , K : R 3 → R and $g:\mathbb{R}^{3}\times \mathbb{R}\rightarrow \mathbb{R}$ g : R 3 × R → R are continuous functions; g is of subcritical growth and has some monotonicity properties. The purpose of this paper is to find the ground state solution of (0.1), i.e., a nontrivial solution with the least possible energy by taking advantage of the generalized Nehari manifold approach, which was proposed by Szulkin and Weth. Furthermore, infinitely many geometrically distinct solutions are gained while g is odd in u.


2019 ◽  
Vol 2019 ◽  
pp. 1-8
Author(s):  
Lizhen Chen ◽  
Anran Li ◽  
Chongqing Wei

We investigate a class of fractional Schrödinger-Poisson system via variational methods. By using symmetric mountain pass theorem, we prove the existence of multiple solutions. Moreover, by using dual fountain theorem, we prove the above system has a sequence of negative energy solutions, and the corresponding energy values tend to 0. These results extend some known results in previous papers.


2020 ◽  
Vol 44 (3) ◽  
pp. 986-997
Author(s):  
Chun-Yu LEI ◽  
Gao-Sheng LIU ◽  
Chang-Mu CHU ◽  
Hong-Min SUO

Sign in / Sign up

Export Citation Format

Share Document