supercritical nonlinearity
Recently Published Documents


TOTAL DOCUMENTS

41
(FIVE YEARS 5)

H-INDEX

11
(FIVE YEARS 0)



2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Bixiang Wang

<p style='text-indent:20px;'>This paper deals with the asymptotic behavior of the non-autonomous random dynamical systems generated by the wave equations with supercritical nonlinearity driven by colored noise defined on <inline-formula><tex-math id="M1">\begin{document}$ \mathbb{R}^n $\end{document}</tex-math></inline-formula> with <inline-formula><tex-math id="M2">\begin{document}$ n\le 6 $\end{document}</tex-math></inline-formula>. Based on the uniform Strichartz estimates, we prove the well-posedness of the equation in the natural energy space and define a continuous cocycle associated with the solution operator. We also establish the existence and uniqueness of tempered random attractors of the equation by showing the uniform smallness of the tails of the solutions outside a bounded domain in order to overcome the non-compactness of Sobolev embeddings on unbounded domains.</p>







2019 ◽  
Vol 21 (05) ◽  
pp. 1850026 ◽  
Author(s):  
Minbo Yang ◽  
Carlos Alberto Santos ◽  
Jiazheng Zhou

In this paper, we consider the existence of least action nodal solutions for the quasilinear defocusing Schrödinger equation in [Formula: see text]: [Formula: see text] where [Formula: see text] is a positive continuous potential, [Formula: see text] is of subcritical growth, [Formula: see text] and [Formula: see text] are two non-negative parameters. By considering a minimizing problem restricted on a partial Nehari manifold, we prove the existence of least action nodal solution via deformation flow arguments and [Formula: see text]-estimates.



Sign in / Sign up

Export Citation Format

Share Document