scholarly journals Multiple solutions for a quasilinear Schrödinger–Poisson system

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Jing Zhang

AbstractIn this article, we consider the following quasilinear Schrödinger–Poisson system $$ \textstyle\begin{cases} -\Delta u+V(x)u-u\Delta (u^{2})+K(x)\phi (x)u=g(x,u), \quad x\in \mathbb{R}^{3}, \\ -\Delta \phi =K(x)u^{2}, \quad x\in \mathbb{R}^{3}, \end{cases} $$ { − Δ u + V ( x ) u − u Δ ( u 2 ) + K ( x ) ϕ ( x ) u = g ( x , u ) , x ∈ R 3 , − Δ ϕ = K ( x ) u 2 , x ∈ R 3 , where $V,K:\mathbb{R}^{3}\rightarrow \mathbb{R}$ V , K : R 3 → R and $g:\mathbb{R}^{3}\times \mathbb{R}\rightarrow \mathbb{R}$ g : R 3 × R → R are continuous functions; g is of subcritical growth and has some monotonicity properties. The purpose of this paper is to find the ground state solution of (0.1), i.e., a nontrivial solution with the least possible energy by taking advantage of the generalized Nehari manifold approach, which was proposed by Szulkin and Weth. Furthermore, infinitely many geometrically distinct solutions are gained while g is odd in u.

2021 ◽  
pp. 1-19
Author(s):  
Jing Zhang ◽  
Lin Li

In this paper, we consider the following Schrödinger equation (0.1) − Δ u − μ u | x | 2 + V ( x ) u = K ( x ) | u | 2 ∗ − 2 u + f ( x , u ) , x ∈ R N , u ∈ H 1 ( R N ) , where N ⩾ 4, 0 ⩽ μ < μ ‾, μ ‾ = ( N − 2 ) 2 4 , V is periodic in x, K and f are asymptotically periodic in x, we take advantage of the generalized Nehari manifold approach developed by Szulkin and Weth to look for the ground state solution of (0.1).


2013 ◽  
Vol 13 (3) ◽  
Author(s):  
Jun Wang ◽  
Lixin Tian ◽  
Junxiang Xu ◽  
Fubao Zhang

AbstractIn this paper, we study the existence and concentration of positive ground state solutions for the semilinear Schrödinger-Poisson systemwhere ε > 0 is a small parameter and λ ≠ 0 is a real parameter, f is a continuous superlinear and subcritical nonlinearity. Suppose that b(x) has a maximum. We prove that the system has a positive ground state solution


2012 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Die Hu ◽  
Xianhua Tang ◽  
Qi Zhang

<p style='text-indent:20px;'>In this paper, we discuss the generalized quasilinear Schrödinger equation with Kirchhoff-type:</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1a"> \begin{document}$\left (1\!+\!b\int_{\mathbb{R}^{3}}g^{2}(u)|\nabla u|^{2} dx \right) \left[-\mathrm{div} \left(g^{2}(u)\nabla u\right)\!+\!g(u)g'(u)|\nabla u|^{2}\right] \!+\!V(x)u\! = \!f( u),(\rm P)$ \end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id="M1">\begin{document}$ b&gt;0 $\end{document}</tex-math></inline-formula> is a parameter, <inline-formula><tex-math id="M2">\begin{document}$ g\in \mathbb{C}^{1}(\mathbb{R},\mathbb{R}^{+}) $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M3">\begin{document}$ V\in \mathbb{C}^{1}(\mathbb{R}^3,\mathbb{R}) $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M4">\begin{document}$ f\in \mathbb{C}(\mathbb{R},\mathbb{R}) $\end{document}</tex-math></inline-formula>. Under some "Berestycki-Lions type assumptions" on the nonlinearity <inline-formula><tex-math id="M5">\begin{document}$ f $\end{document}</tex-math></inline-formula> which are almost necessary, we prove that problem <inline-formula><tex-math id="M6">\begin{document}$ (\rm P) $\end{document}</tex-math></inline-formula> has a nontrivial solution <inline-formula><tex-math id="M7">\begin{document}$ \bar{u}\in H^{1}(\mathbb{R}^{3}) $\end{document}</tex-math></inline-formula> such that <inline-formula><tex-math id="M8">\begin{document}$ \bar{v} = G(\bar{u}) $\end{document}</tex-math></inline-formula> is a ground state solution of the following problem</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1b"> \begin{document}$-\left(1+b\int_{\mathbb{R}^{3}} |\nabla v|^{2} dx \right) \triangle v+V(x)\frac{G^{-1}(v)}{g(G^{-1}(v))} = \frac{f(G^{-1}(v))}{g(G^{-1}(v))},(\rm \bar{P})$ \end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id="M9">\begin{document}$ G(t): = \int_{0}^{t} g(s) ds $\end{document}</tex-math></inline-formula>. We also give a minimax characterization for the ground state solution <inline-formula><tex-math id="M10">\begin{document}$ \bar{v} $\end{document}</tex-math></inline-formula>.</p>


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Min Liu ◽  
Jiu Liu

In this paper, we study the following autonomous nonlinear Schrödinger system (discussed in the paper), where λ , μ , and ν are positive parameters; 2 ∗ = 2 N / N − 2 is the critical Sobolev exponent; and f satisfies general subcritical growth conditions. With the help of the Pohožaev manifold, a ground state solution is obtained.


2020 ◽  
Vol 20 (3) ◽  
pp. 511-538 ◽  
Author(s):  
Lin Li ◽  
Patrizia Pucci ◽  
Xianhua Tang

AbstractIn this paper, we study the existence of ground state solutions for the nonlinear Schrödinger–Bopp–Podolsky system with critical Sobolev exponent\left\{\begin{aligned} \displaystyle{}{-}\Delta u+V(x)u+q^{2}\phi u&% \displaystyle=\mu|u|^{p-1}u+|u|^{4}u&&\displaystyle\phantom{}\mbox{in }\mathbb% {R}^{3},\\ \displaystyle{-}\Delta\phi+a^{2}\Delta^{2}\phi&\displaystyle=4\pi u^{2}&&% \displaystyle\phantom{}\mbox{in }\mathbb{R}^{3},\end{aligned}\right.where {\mu>0} is a parameter and {2<p<5}. Under certain assumptions on V, we prove the existence of a nontrivial ground state solution, using the method of the Pohozaev–Nehari manifold, the arguments of Brézis–Nirenberg, the monotonicity trick and a global compactness lemma.


2018 ◽  
Vol 9 (1) ◽  
pp. 108-123 ◽  
Author(s):  
Claudianor O. Alves ◽  
Grey Ercole ◽  
M. Daniel Huamán Bolaños

Abstract We prove the existence of at least one ground state solution for the semilinear elliptic problem \left\{\begin{aligned} \displaystyle-\Delta u&\displaystyle=u^{p(x)-1},\quad u% >0,\quad\text{in}\ G\subseteq\mathbb{R}^{N},\ N\geq 3,\\ \displaystyle u&\displaystyle\in D_{0}^{1,2}(G),\end{aligned}\right. where G is either {\mathbb{R}^{N}} or a bounded domain, and {p\colon G\to\mathbb{R}} is a continuous function assuming critical and subcritical values.


2018 ◽  
Vol 61 (2) ◽  
pp. 353-369 ◽  
Author(s):  
Dongdong Qin ◽  
Yubo He ◽  
Xianhua Tang

AbstractIn this paper, we consider the following critical Kirchhoff type equation:By using variational methods that are constrained to the Nehari manifold, we prove that the above equation has a ground state solution for the case when 3 < q < 5. The relation between the number of maxima of Q and the number of positive solutions for the problem is also investigated.


2020 ◽  
Vol 20 (4) ◽  
pp. 819-831
Author(s):  
Yinbin Deng ◽  
Qingfei Jin ◽  
Wei Shuai

AbstractWe study the existence of positive ground state solution for Choquard systems. In the autonomous case, we prove the existence of at least one positive ground state solution by the Pohozaev manifold method and symmetric-decreasing rearrangement arguments. Moreover, we show that each positive ground state solution is radial symmetric. While, in the nonautonomous case, a positive ground state solution is obtained by using a monotonicity trick and a global compactness lemma. We remark that, under our assumptions of the nonlinearity {W_{u}}, the search of ground state solutions cannot be reduced to the study of critical points of a functional restricted to a Nehari manifold.


Sign in / Sign up

Export Citation Format

Share Document