scholarly journals Ergodic theory of affine isometric actions on Hilbert spaces

Author(s):  
Yuki Arano ◽  
Yusuke Isono ◽  
Amine Marrakchi
2009 ◽  
Vol 01 (01) ◽  
pp. 87-100 ◽  
Author(s):  
ROMAIN TESSERA

We prove that a metric space does not coarsely embed into a Hilbert space if and only if it satisfies a sequence of Poincaré inequalities, which can be formulated in terms of (generalized) expanders. We also give quantitative statements, relative to the compression. In the equivariant context, our result says that a group does not have the Haagerup Property if and only if it has relative property T with respect to a family of probabilities whose supports go to infinity. We give versions of this result both in terms of unitary representations, and in terms of affine isometric actions on Hilbert spaces.


Author(s):  
Svante Janson
Keyword(s):  

Author(s):  
Karl E. Petersen
Keyword(s):  

2020 ◽  
Vol Accepted ◽  
Author(s):  
Oluwatosin Temitope Mewomo ◽  
Hammed Anuoluwapo Abass ◽  
Chinedu Izuchukwu ◽  
Olawale Kazeem Oyewole

Author(s):  
D. E. Edmunds ◽  
W. D. Evans

This chapter is concerned with closable and closed operators in Hilbert spaces, especially with the special classes of symmetric, J-symmetric, accretive and sectorial operators. The Stone–von Neumann theory of extensions of symmetric operators is treated as a special case of results for compatible adjoint pairs of closed operators. Also discussed in detail is the stability of closedness and self-adjointness under perturbations. The abstract results are applied to operators defined by second-order differential expressions, and Sims’ generalization of the Weyl limit-point, limit-circle characterization for symmetric expressions to J-symmetric expressions is proved.


Sign in / Sign up

Export Citation Format

Share Document