scholarly journals COARSE EMBEDDINGS INTO A HILBERT SPACE, HAAGERUP PROPERTY AND POINCARÉ INEQUALITIES

2009 ◽  
Vol 01 (01) ◽  
pp. 87-100 ◽  
Author(s):  
ROMAIN TESSERA

We prove that a metric space does not coarsely embed into a Hilbert space if and only if it satisfies a sequence of Poincaré inequalities, which can be formulated in terms of (generalized) expanders. We also give quantitative statements, relative to the compression. In the equivariant context, our result says that a group does not have the Haagerup Property if and only if it has relative property T with respect to a family of probabilities whose supports go to infinity. We give versions of this result both in terms of unitary representations, and in terms of affine isometric actions on Hilbert spaces.

2015 ◽  
Vol 93 (1) ◽  
pp. 146-151 ◽  
Author(s):  
LEONID V. KOVALEV

Finite subset spaces of a metric space $X$ form a nested sequence under natural isometric embeddings $X=X(1)\subset X(2)\subset \cdots \,$. We prove that this sequence admits Lipschitz retractions $X(n)\rightarrow X(n-1)$ when $X$ is a Hilbert space.


Author(s):  
Andrea Schioppa

Abstract Using an inverse system of metric graphs as in [3], we provide a simple example of a metric space X that admits Poincaré inequalities for a continuum of mutually singular measures.


1975 ◽  
Vol 20 (1) ◽  
pp. 66-72 ◽  
Author(s):  
Ludvik Janos

AbstractA subset Y of a metric space (X, p) is called rigid if all the distances p(y1, y2) between points y1, y2 ∈ Y in Y are mutually different. The main purpose of this paper is to prove the existence of dense rigid subsets of cardinality c in Euclidean spaces En and in the separable Hilbert space l2. Some applications to abstract point set geometries are given and the connection with the theory of dimension is discussed.


Author(s):  
Joachim Toft ◽  
Anupam Gumber ◽  
Ramesh Manna ◽  
P. K. Ratnakumar

AbstractLet $$\mathcal H$$ H be a Hilbert space of distributions on $$\mathbf{R}^{d}$$ R d which contains at least one non-zero element of the Feichtinger algebra $$S_0$$ S 0 and is continuously embedded in $$\mathscr {D}'$$ D ′ . If $$\mathcal H$$ H is translation and modulation invariant, also in the sense of its norm, then we prove that $$\mathcal H= L^2$$ H = L 2 , with the same norm apart from a multiplicative constant.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Sung-Sik Lee

Abstract Einstein’s theory of general relativity is based on the premise that the physical laws take the same form in all coordinate systems. However, it still presumes a preferred decomposition of the total kinematic Hilbert space into local kinematic Hilbert spaces. In this paper, we consider a theory of quantum gravity that does not come with a preferred partitioning of the kinematic Hilbert space. It is pointed out that, in such a theory, dimension, signature, topology and geometry of spacetime depend on how a collection of local clocks is chosen within the kinematic Hilbert space.


Symmetry ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1060
Author(s):  
Enrico Celeghini ◽  
Manuel Gadella ◽  
Mariano A. del del Olmo

We introduce a multi-parameter family of bases in the Hilbert space L2(R) that are associated to a set of Hermite functions, which also serve as a basis for L2(R). The Hermite functions are eigenfunctions of the Fourier transform, a property that is, in some sense, shared by these “generalized Hermite functions”. The construction of these new bases is grounded on some symmetry properties of the real line under translations, dilations and reflexions as well as certain properties of the Fourier transform. We show how these generalized Hermite functions are transformed under the unitary representations of a series of groups, including the Weyl–Heisenberg group and some of their extensions.


Nonlinearity ◽  
2002 ◽  
Vol 15 (3) ◽  
pp. 565-580 ◽  
Author(s):  
J A Carrillo ◽  
C Lederman ◽  
P A Markowich ◽  
G Toscani

2008 ◽  
Vol 51 (2) ◽  
pp. 529-543 ◽  
Author(s):  
Feng-Yu Wang

AbstractCorresponding to known results on Orlicz–Sobolev inequalities which are stronger than the Poincaré inequality, this paper studies the weaker Orlicz–Poincaré inequality. More precisely, for any Young function $\varPhi$ whose growth is slower than quadric, the Orlicz–Poincaré inequality$$ \|f\|_\varPhi^2\le C\E(f,f),\qquad\mu(f):=\int f\,\mathrm{d}\mu=0 $$is studied by using the well-developed weak Poincaré inequalities, where $\E$ is a conservative Dirichlet form on $L^2(\mu)$ for some probability measure $\mu$. In particular, criteria and concrete sharp examples of this inequality are presented for $\varPhi(r)=r^p$ $(p\in[1,2))$ and $\varPhi(r)= r^2\log^{-\delta}(\mathrm{e} +r^2)$ $(\delta>0)$. Concentration of measures and analogous results for non-conservative Dirichlet forms are also obtained. As an application, the convergence rate of porous media equations is described.


2005 ◽  
Vol 71 (1) ◽  
pp. 107-111
Author(s):  
Fathi B. Saidi

In this paper we adopt the notion of orthogonality in Banach spaces introduced by the author in [6]. There, the author showed that in any two-dimensional subspace F of E, every nonzero element admits at most one orthogonal direction. The problem of existence of such orthogonal direction was not addressed before. Our main purpose in this paper is the investigation of this problem in the case where E is a real Banach space. As a result we obtain a characterisation of Hilbert spaces stating that, if in every two-dimensional subspace F of E every nonzero element admits an orthogonal direction, then E is isometric to a Hilbert space. We conclude by presenting some open problems.


Sign in / Sign up

Export Citation Format

Share Document