Synthesis in vitro/in vivo evaluation and in silico physicochemical study of prodrug approach for brain targeting of alkylating agent

2013 ◽  
Vol 22 (11) ◽  
pp. 5324-5336 ◽  
Author(s):  
Rajesh K. Singh ◽  
D. N. Prasad ◽  
T. R. Bhardwaj
2021 ◽  
pp. 088391152199784
Author(s):  
Loveleen Kaur ◽  
Ajay Kumar Thakur ◽  
Pradeep Kumar ◽  
Inderbir Singh

Present study was aimed to synthesize and characterize Chitosan-Catechol conjugates and to design and develop mucoadhesive pellets loaded with lafutidine. SEM images indicated the presence of fibrous structures responsible for enhanced mucoadhesive potential of Chitosan-Catechol conjugates. Thermodynamic stability and amorphous nature of conjugates was confirmed by DSC and XRD studies respectively. Rheological studies were used to evaluate polymer mucin interactions wherein strong interactions between Chitosan-Catechol conjugate and mucin was observed in comparison to pristine chitosan and mucin. The mucoadhesion potential of Chitosan-Catechol (Cht-C) versus Chitosan (Cht) was assessed in silico using molecular mechanics simulations and the results obtained were compared with the in vitro and ex vivo results. Cht-C/mucin demonstrated much higher energy stabilization (∆E ≈ −65 kcal/mol) as compared to Cht/mucin molecular complex. Lafutidine-loaded pellets were prepared from Chitosan (LPC) and Chitosan-Catechol conjugates (LPCC) and were evaluated for various physical properties viz. flow, circularity, roundness, friability, drug content, particle size and percent mucoadhesion. In vitro drug release studies on LPC and LPCC pellets were performed for computing t50%, t90% and mean dissolution time. The values of release exponent from Korsmeyer-Peppas model was reported to be 0.443 and 0.759 for LPC and LPCC pellets suggesting Fickian and non-Fickian mechanism representing drug release, respectively. In vivo results depicted significant controlled release and enhanced residence of the drug after being released from the chitosan-catechol coated pellets. Chitosan-Catechol conjugates were found to be a promising biooadhesive polymer for the development of various mucoadhesive formulations.


2018 ◽  
Vol 93 (3) ◽  
pp. 364-372 ◽  
Author(s):  
Ajmer Singh Grewal ◽  
Rajeev Kharb ◽  
Deo Nandan Prasad ◽  
Jagdeep Singh Dua ◽  
Viney Lather

2020 ◽  
Vol 11 ◽  
Author(s):  
Freya Cools ◽  
Dhoha Triki ◽  
Nele Geerts ◽  
Peter Delputte ◽  
Denis Fourches ◽  
...  
Keyword(s):  

2014 ◽  
Vol 63 ◽  
pp. 233-242 ◽  
Author(s):  
Bart Hens ◽  
Joachim Brouwers ◽  
Bart Anneveld ◽  
Maura Corsetti ◽  
Mira Symillides ◽  
...  

2018 ◽  
Vol 15 (8) ◽  
pp. 3153-3166 ◽  
Author(s):  
Mathieu Verdurand ◽  
Elise Levigoureux ◽  
Wael Zeinyeh ◽  
Laurent Berthier ◽  
Meriem Mendjel-Herda ◽  
...  

2020 ◽  
Vol 17 ◽  
Author(s):  
Pranav Shah ◽  
Jayant Sarolia ◽  
Bhavin Vyas ◽  
Priti Wagh ◽  
Kaul Ankur ◽  
...  

Background: Intranasal administration of biodegradable nanoparticles has been extensively studied for targeting the drug directly to CNS through olfactory or trigeminal route bypassing blood brain barrier. Objective: The objective of the present study was to optimize Clonazepam loaded PLGA nanoparticles (CLO-PNPs) by investigating the effect of process variables on the responses using 32 full factorial design. Methods: Effect of two independent factors-amount of PLGA and concentration of Poloxamer 188, were studied at low, medium and high levels on three dependent responses-%Entrapment efficiency, Particle size (nm) and %cumulative drug release at 24hr. Results: %EE, Particle size and %CDR at 24hr of optimized batch was 63.7%, 165.1 nm and 86.96% respectively. Nanoparticles were radiolabeled with 99mTc and biodistribution was investigated in BALB/c mice after intranasal & intravenous administrations. Significantly higher brain/blood uptake ratios and AUC values in brain following intranasal administration of CLO-PNPs indicated more effective brain targeting of CLO. Higher brain uptake of intranasal CLO-PNPs was confirmed by rabbit brain scintigraphy imaging. Histopathological study performed on goat nasal mucosa revealed no adverse response of nanoparticles. TEM image exhibited spherical shaped particles in nano range. DSC and XRD studies suggested Clonazepam encapsulation within PLGA matrix. The onset of occurrence of PTZ-induced seizures in rats was significantly delayed by intranasal nanoparticles as compared to intranasal & intravenous CLO-SOL. Conclusion: This investigation exhibits rapid rate and higher extent of CLO transport in brain with intranasal CLO-PNPs suggesting a better option as compared to oral & parenteral route in management of acute status epilepticus.


2021 ◽  
Vol 106 ◽  
pp. 104458
Author(s):  
Chetna Kharbanda ◽  
Mohammad Sarwar Alam ◽  
Hinna Hamid ◽  
Yakub Ali ◽  
Syed Nazreen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document