Spectral structure of stratified turbulence: direct numerical simulations and predictions by large eddy simulation

2012 ◽  
Vol 27 (3-4) ◽  
pp. 319-336 ◽  
Author(s):  
Sebastian Remmler ◽  
Stefan Hickel
Author(s):  
Giacomo Busco ◽  
Yassin A. Hassan

The highly turbulent flow inside a pressurized water reactor makes unpractical the use of scale resolving simulations, due to the large number of space and time turbulent structures. The high computational cost associated with typical large eddies simulations or direct numerical simulations techniques is unsuitable due to the large spatiotemporal resolution required. Partially averaged Navier-Stokes turbulence model is presented as bridging model between Reynolds averaged Navier-Stokes equations and direct numerical simulations. As filtered representation of the Navier-Stokes equations, the model is able to continuously shift its energy-based filter, inside the turbulence spectrum, being able to resolve the turbulent scales of interest. The choice of energy based cut-off filters gives the chance to directly impose the degree of needed resolution, where the most important large scales unsteadiness are resolved at minimal computational expenses. The partially averaged Navier-Stokes modelling approach has been tested for a Reynolds number of 14,000, inside a 5 × 5 fuel bundle, with a single spacer grid and split-type mixing vanes. Four different filters have been tested, whose resolution ranged from Reynolds averaged Navier-Stokes and large eddy simulation. A comparison with large eddy simulation will be presented. The results show that the partially averaged Navier-Stokes modeling produces results comparable to those of large eddy simulation when the appropriate cut-off energy filter is chosen. The turbulence models results will be compared with the available particle image velocimetry experimental data.


2012 ◽  
Vol 134 (4) ◽  
Author(s):  
Yacine Salhi ◽  
El-Khider Si-Ahmed ◽  
Gérard Degrez ◽  
Jack Legrand

The highly turbulent flow occurring inside (electro)chemical reactors requires accurate simulation of scalar mixing if computational fluid dynamics (CFD) methods are to be used with confidence in design. This has motivated the present paper, which describes the implementation of a passive scalar transport equation into a hybrid spectral/finite-element code. Direct numerical simulations (DNS) and large eddy simulation (LES) were performed to study the effects of gravitational and centrifugal potentials on the stability of incom-pressible Taylor-Couette flow. The flow is confined between two concentric cylinders with an inner rotating cylinder while the outer one is at rest. The Navier-Stokes equations with the uncoupled convection–diffusion–reaction (CDR) equation are solved using a code named spectral/finite element large eddy simulations (SFELES) which is based on spectral development in one direction combined with a finite element discretization in the remaining directions. The performance of the LES code is validated with published DNS data for channel flow. Velocity and scalar statistics showed good agreement between the current LES predictions and DNS data. Special attention was given to the flow field, in the vicinity of Reynolds number of 68.2 with radii ratio of 0.5. The effect of Sc on the concentration peak is pointed out while the magnitude of heat transfer shows a dependence of the Prandtl number with an exponent of 0.375.


2001 ◽  
Vol 436 ◽  
pp. 353-391 ◽  
Author(s):  
J. C. R. HUNT ◽  
N. D. SANDHAM ◽  
J. C. VASSILICOS ◽  
B. E. LAUNDER ◽  
P. A. MONKEWITZ ◽  
...  

Recent research is making progress in framing more precisely the basic dynamical and statistical questions about turbulence and in answering them. It is helping both to define the likely limits to current methods for modelling industrial and environmental turbulent flows, and to suggest new approaches to overcome these limitations. Our selective review is based on the themes and new results that emerged from more than 300 presentations during the Programme held in 1999 at the Isaac Newton Institute, Cambridge, UK, and on research reported elsewhere. A general conclusion is that, although turbulence is not a universal state of nature, there are certain statistical measures and kinematic features of the small-scale flow field that occur in most turbulent flows, while the large-scale eddy motions have qualitative similarities within particular types of turbulence defined by the mean flow, initial or boundary conditions, and in some cases, the range of Reynolds numbers involved. The forced transition to turbulence of laminar flows caused by strong external disturbances was shown to be highly dependent on their amplitude, location, and the type of flow. Global and elliptical instabilities explain much of the three-dimensional and sudden nature of the transition phenomena. A review of experimental results shows how the structure of turbulence, especially in shear flows, continues to change as the Reynolds number of the turbulence increases well above about 104 in ways that current numerical simulations cannot reproduce. Studies of the dynamics of small eddy structures and their mutual interactions indicate that there is a set of characteristic mechanisms in which vortices develop (vortex stretching, roll-up of instability sheets, formation of vortex tubes) and another set in which they break up (through instabilities and self- destructive interactions). Numerical simulations and theoretical arguments suggest that these often occur sequentially in randomly occurring cycles. The factors that determine the overall spectrum of turbulence were reviewed. For a narrow distribution of eddy scales, the form of the spectrum can be defined by characteristic forms of individual eddies. However, if the distribution covers a wide range of scales (as in elongated eddies in the ‘wall’ layer of turbulent boundary layers), they collectively determine the spectra (as assumed in classical theory). Mathematical analyses of the Navier–Stokes and Euler equations applied to eddy structures lead to certain limits being defined regarding the tendencies of the vorticity field to become infinitely large locally. Approximate solutions for eigen modes and Fourier components reveal striking features of the temporal, near-wall structure such as bursting, and of the very elongated, spatial spectra of sheared inhomogeneous turbulence; but other kinds of eddy concepts are needed in less structured parts of the turbulence. Renormalized perturbation methods can now calculate consistently, and in good agreement with experiment, the evolution of second- and third-order spectra of homogeneous and isotropic turbulence. The fact that these calculations do not explicitly include high-order moments and extreme events, suggests that they may play a minor role in the basic dynamics. New methods of approximate numerical simulations of the larger scales of turbulence or ‘very large eddy simulation’ (VLES) based on using statistical models for the smaller scales (as is common in meteorological modelling) enable some turbulent flows with a non-local and non-equilibrium structure, such as impinging or convective flows, to be calculated more efficiently than by using large eddy simulation (LES), and more accurately than by using ‘engineering’ models for statistics at a single point. Generally it is shown that where the turbulence in a fluid volume is changing rapidly and is very inhomogeneous there are flows where even the most complex ‘engineering’ Reynolds stress transport models are only satisfactory with some special adaptation; this may entail the use of transport equations for the third moments or non-universal modelling methods designed explicitly for particular types of flow. LES methods may also need flow-specific corrections for accurate modelling of different types of very high Reynolds number turbulent flow including those near rigid surfaces.This paper is dedicated to the memory of George Batchelor who was the inspiration of so much research in turbulence and who died on 30th March 2000. These results were presented at the last fluid mechanics seminar in DAMTP Cambridge that he attended in November 1999.


2010 ◽  
Vol 53 (1) ◽  
pp. 135-146 ◽  
Author(s):  
Zhi Shen ◽  
YuPeng Li ◽  
GuiXiang Cui ◽  
ZhaoShun Zhang

2014 ◽  
Vol 71 (5) ◽  
pp. 1863-1879 ◽  
Author(s):  
Daniel Chung ◽  
Georgios Matheou

Abstract The stretched-vortex subgrid-scale (SGS) model is extended to enable large-eddy simulation of buoyancy-stratified turbulence. Both stable and unstable stratifications are considered. The extended model retains the anisotropic form of the original stretched-vortex model, but the SGS kinetic energy and the characteristic SGS eddy size are modified by buoyancy subject to two constraints: first, the SGS kinetic energy dynamics is determined by stationary and homogeneous conditions, and second, the SGS eddy size obeys a scaling analogous to the Monin–Obukhov similarity theory. The SGS model construction, comprising an ensemble of subgrid stretched-vortical structures, naturally limits vertical mixing but allows horizontal mixing provided the alignment of the SGS vortex ensemble is favorable, even at high nominal gradient Richardson numbers. In very stable stratification, the model recovers the z-less limit, in which a vortex-based Obukhov length controls the SGS dynamics, while in very unstable stratification, the model recovers the free-convection limit, in which a vortex-based Deardorff velocity controls the SGS dynamics. The efficacy of the present SGS model is demonstrated by simulating the canonical stationary and homogeneous, stratified sheared turbulence at high Reynolds numbers and moderately high Richardson numbers. In the postprocessing, the SGS dynamics of the stretched-vortex model is further interrogated to yield predictions of buoyancy-adjusted one-dimensional SGS spectra and SGS root-mean-square velocity-derivative fluctuations.


Author(s):  
Masa-aki Tanaka ◽  
Hiroyuki Ohshima ◽  
Hideaki Monji

At the JAEA (Japan Atomic Energy Agency), the simulation code “MUGTHES (MUlti Geometry simulation code for THErmal-hydraulic and Structure heat conduction analysis in boundary fitted coordinate)” has been developed. MUGTHES employs LES (Large Eddy Simulation) approach to calculate unsteady thermal-hydraulic phenomena and the BFC (Boundary Fitted Coordinate) system to simulate complex geometry in the system. In this study, numerical simulations for pipe elbow flows in various curvature radius ratio (Rc/D) conditions at several Reynolds number conditions. By the numerical simulation in pipe elbow at a laminar flow condition of Re = 700, the numerical schemes and the evaluation method of metrics in BFC system are verified and an appropriate mesh arrangement for elbow pipe is considered. By the numerical simulations in pipe elbow with the ratio of Rc/D = 2 under turbulent flow condition of Re = 60,000, the LES approach using standard Smagorinsky model with wall function law is examined in comparison with the experimental results. Moreover, numerical simulation for the 1/3-scaled water experiment at Re = 3.7×106 which simulates the primary cooling system of the JSFR (Japan Sodium-cooled Fast Reactor) is conducted. From comparisons of axial velocity profiles, applicability of MUGTHES to the elbow pipe flow is confirmed and the characteristic of three-dimensional flow structure relating to the structural integrity of the elbow pipe is discussed.


Sign in / Sign up

Export Citation Format

Share Document