scholarly journals Large-Eddy Simulation of Stratified Turbulence. Part I: A Vortex-Based Subgrid-Scale Model

2014 ◽  
Vol 71 (5) ◽  
pp. 1863-1879 ◽  
Author(s):  
Daniel Chung ◽  
Georgios Matheou

Abstract The stretched-vortex subgrid-scale (SGS) model is extended to enable large-eddy simulation of buoyancy-stratified turbulence. Both stable and unstable stratifications are considered. The extended model retains the anisotropic form of the original stretched-vortex model, but the SGS kinetic energy and the characteristic SGS eddy size are modified by buoyancy subject to two constraints: first, the SGS kinetic energy dynamics is determined by stationary and homogeneous conditions, and second, the SGS eddy size obeys a scaling analogous to the Monin–Obukhov similarity theory. The SGS model construction, comprising an ensemble of subgrid stretched-vortical structures, naturally limits vertical mixing but allows horizontal mixing provided the alignment of the SGS vortex ensemble is favorable, even at high nominal gradient Richardson numbers. In very stable stratification, the model recovers the z-less limit, in which a vortex-based Obukhov length controls the SGS dynamics, while in very unstable stratification, the model recovers the free-convection limit, in which a vortex-based Deardorff velocity controls the SGS dynamics. The efficacy of the present SGS model is demonstrated by simulating the canonical stationary and homogeneous, stratified sheared turbulence at high Reynolds numbers and moderately high Richardson numbers. In the postprocessing, the SGS dynamics of the stretched-vortex model is further interrogated to yield predictions of buoyancy-adjusted one-dimensional SGS spectra and SGS root-mean-square velocity-derivative fluctuations.

1999 ◽  
Vol 390 ◽  
pp. 151-185 ◽  
Author(s):  
H.-J. KALTENBACH ◽  
M. FATICA ◽  
R. MITTAL ◽  
T. S. LUND ◽  
P. MOIN

Large-eddy simulation (LES) has been used to study the flow in a planar asymmetric diffuser. The wide range of spatial and temporal scales, the presence of an adverse pressure gradient, and the formation of an unsteady separation bubble in the rear part of the diffuser make this flow a challenging test case for assessing the predictive capability of LES. Simulation results for mean flow, pressure recovery and skin friction are in excellent agreement with data from two recent experiments. The inflow consists of a fully developed turbulent channel flow at a Reynolds number based on shear velocity, Reτ=500. It is found that accurate representation of the in flow velocity field is critical for accurate prediction of the flow in the diffuser. Although the simulation in the diffuser is well resolved, the subgrid-scale model plays a significant role for both mean momentum and turbulent kinetic energy balances. Subgrid-scale stresses contribute a maximum of 8% to the local value of the total shear stress with the maximum values found in the inlet duct and along the flat wall where the flow remains attached. The subgrid-scale model adapts to the enhanced turbulence levels in the rear part of the diffuser by providing more than 80% of the dissipation rate for turbulent kinetic energy. The unsteady separation excites large scales of motion which extend over the major part of the duct cross-section and penetrate deeply into the core of the flow. Instantaneous flow reversal is observed along both walls immediately behind the diffuser throat which is far upstream of the location of main separation. While the mean flow profile changes gradually as the flow enters the expansion, turbulent stresses undergo rapid changes over a short streamwise distance along the deflected wall. An explanation is offered which considers the strain field as well as the influence of geometry changes. The effect of grid resolution and spanwise domain size on the flow field prediction has been documented and this allows an assessment of the computational requirements for carrying out such simulations.


2013 ◽  
Vol 444-445 ◽  
pp. 281-285 ◽  
Author(s):  
Tao Guo ◽  
Jun Zhou ◽  
Xiao Nan Liu

The vibration intensity is strong in Francis turbine occurred under the small opening conditions, such as Lijia Gorges and Three Gorges project. In paper we use large eddy simulation (LES) method base on Vreman SubGrid-Scale model to study the generation and evolution process of turbulence flow, capturing the details of the flow structures and the dissipation of the turbulent kinetic energy. The SIMPIEC algorithm is applied to solve the coupled equation of velocity and pressure. The result shows that the small guide vane opening conditions deviate the optimal conditions most. So some unstable flow characters been induced. Such as the turbulent kinetic energy of fluid in guide vanes zone, the blade passage and the draft tube are very strong. The unstable flow phenomenon including the swirl, flow separation, interruption and vortex strip. It can be deduced that the vibration of unit is induced by these flow characteristic.


Sign in / Sign up

Export Citation Format

Share Document