Identification and verification of location errors of rotary axes on five-axis machine tools by using a touch-trigger probe and a sphere

2018 ◽  
Vol 100 (9-12) ◽  
pp. 2653-2667 ◽  
Author(s):  
Yu-Ta Chen ◽  
Pruthvikumar More ◽  
Chien-Sheng Liu
2014 ◽  
Vol 8 (1) ◽  
pp. 20-27 ◽  
Author(s):  
Soichi Ibaraki ◽  
◽  
Yusuke Ota

This paper presents a scheme to calibrate the error map of the rotary axes of a five-axis machine tool. This is done by means of on-the-machine measurement of a test piece using a contact-type touch-trigger probe. The present probing-based approach is more suitable for efficient and automated “self-calibration,” than conventional calibration schemes, such as ball bar tests or R-test. It is thus advantageous in the application to periodic checking of the error map, or periodic updating of its numerical compensation. In the present approach, a test piece of arbitrary geometry, e.g. a raw unmachined workpiece, can be used as the probing target. An experimental demonstration is presented.


2015 ◽  
Vol 81 (1-4) ◽  
pp. 149-158 ◽  
Author(s):  
Zhouxiang Jiang ◽  
Song Bao ◽  
Xiangdong Zhou ◽  
Xiaoqi Tang ◽  
Shiqi Zheng

2018 ◽  
Author(s):  
Guoqiang Fu ◽  
Hongli Gao ◽  
Tengda Gu

The postprocessor is essential for machining with five-axis machine tools. This paper develops one universal postprocessor for table-tilting type of five-axis machine tools without rotational tool center point (RTCP) function. Firstly, positions of two rotary axes and the workpiece in the machine coordinate system (MCS) are introduced into the kinematic chain of the five-axis machine tools. The uniform product of exponential (POE) formula of the tool relative to the workpiece is established to obtain the universal forward kinematics. On this basis, the postprocessor of table-tilting type of five-axis machine tools is developed. The calculation of rotation angles of rotation axes is proposed in details, including the calculation of double solutions, the determination of rotation angles of C-axis and the selection principle of the shortest path of rotation angles. Movements of linear axes are calculated with rotation angles of rotary axes. The generated movements of all axes are actual positions of all axes relative to their zero positions, which can be used for machining directly. The postprocessor does not rely on RTCP function with positions of rotary axes and the workpiece in MCS. Finally, cutting test in VERICUT and real cutting experiments on SmartCNC500_DRTD five-axis machine tool are carried out to verify the effectiveness of the proposed postprocessor.


2015 ◽  
Vol 79 (1-4) ◽  
pp. 245-254 ◽  
Author(s):  
Zhouxiang Jiang ◽  
Xiaoqi Tang ◽  
Xiangdong Zhou ◽  
Shiqi Zheng

2019 ◽  
Vol 141 (11) ◽  
Author(s):  
Song Gao ◽  
Jihong Chen ◽  
Shusheng Liu ◽  
Xiukun Yuan ◽  
Pengcheng Hu ◽  
...  

Abstract Due to their superior machining quality, efficiency, and availability, five-axis machine tools are important for the manufacturing of complicated parts of freeform surfaces. In this study, a new type of the five-axis machine tool was designed that is composed of four rotary axes as well as one translational axis. Given the structure of the proposed machine tool, an inverse kinematics analysis was conducted analytically, and a set of methods was then proposed to address the issues in the kinematic analysis, e.g., the singularity and multi-solution problems. Compared with traditional five-axis machine tools, which are typically composed of three linear axes and two rotary axes, the proposed machine tool exhibited better kinematic performance with machining parts with hub features, such as impellers, which was validated by simulations and real cuttings.


Sign in / Sign up

Export Citation Format

Share Document