Design and Kinematic Analysis of a Novel Machine Tool With Four Rotational Axes and One Translational Axis

2019 ◽  
Vol 141 (11) ◽  
Author(s):  
Song Gao ◽  
Jihong Chen ◽  
Shusheng Liu ◽  
Xiukun Yuan ◽  
Pengcheng Hu ◽  
...  

Abstract Due to their superior machining quality, efficiency, and availability, five-axis machine tools are important for the manufacturing of complicated parts of freeform surfaces. In this study, a new type of the five-axis machine tool was designed that is composed of four rotary axes as well as one translational axis. Given the structure of the proposed machine tool, an inverse kinematics analysis was conducted analytically, and a set of methods was then proposed to address the issues in the kinematic analysis, e.g., the singularity and multi-solution problems. Compared with traditional five-axis machine tools, which are typically composed of three linear axes and two rotary axes, the proposed machine tool exhibited better kinematic performance with machining parts with hub features, such as impellers, which was validated by simulations and real cuttings.

2022 ◽  
Author(s):  
Zhongyang Lu ◽  
Xu Yang ◽  
Ji Zhao

Abstract Planning tool-paths on free-form surfaces is a widely discussed issue. However, traditional methods of generating paths capable of meeting all the requirements of blade machining remain challenging. In this study, a new iso-parametric path-planning strategy based on a novel parameterization method combined with the conformal transformation theory was proposed. The proposed method could adapt to the curvature characteristics of the blade surface, improving the kinematic performance of the machining process, reducing multi-axis coordinated motion control complexity, and improving machining quality. The proposed method was then compared with three traditional methods. The influence of the tool-path on the kinematic performance of the machine tool was quantitatively examined based on the kinematics models of two different machine tools. A large cutting depth milling experiment was conducted to verify that kinematics optimization could improve machining quality. The proposed method provides a more reasonable path-planning approach for blade machining on a five-axis machine tool, which is of great significance in reducing the cost of blade machining and the risks of blade failure. Moreover, it is of great significance for the large-scale automated production of blades.


2014 ◽  
Vol 8 (1) ◽  
pp. 20-27 ◽  
Author(s):  
Soichi Ibaraki ◽  
◽  
Yusuke Ota

This paper presents a scheme to calibrate the error map of the rotary axes of a five-axis machine tool. This is done by means of on-the-machine measurement of a test piece using a contact-type touch-trigger probe. The present probing-based approach is more suitable for efficient and automated “self-calibration,” than conventional calibration schemes, such as ball bar tests or R-test. It is thus advantageous in the application to periodic checking of the error map, or periodic updating of its numerical compensation. In the present approach, a test piece of arbitrary geometry, e.g. a raw unmachined workpiece, can be used as the probing target. An experimental demonstration is presented.


2015 ◽  
Vol 9 (4) ◽  
pp. 387-395 ◽  
Author(s):  
Soichi Ibaraki ◽  
◽  
Yu Nagai ◽  
Hisashi Otsubo ◽  
Yasutaka Sakai ◽  
...  

The R-test measures the three-dimensional displacement of a precision sphere, attached to a machine spindle, by using three displacement sensors fixed to the machine’s table. Its application to error calibration for five-axis machine tools has long been studied. This paper presents software for analyzing the measured R-test trajectories for error diagnosis and numerical compensation for rotary axis location errors and error motions. The developed software first graphically presents the measured R-test trajectories to help a user intuitively understand error motions of the rotary axes. It also numerically parameterizes the rotary axis geometric error parameters, and then generates a compensation table that can be implemented in some latest-generation commercial CNC systems. An actual demonstration of its application to a five-axis machine tool with a universal head (two rotary axes on the spindle side) is presented.


Author(s):  
Xiaogeng Jiang ◽  
Robert J Cripps

A double ball bar (DBB) is used extensively to evaluate the geometric and dynamic performance of three-axis machine tools by means of the XY, YZ and XZ planar circular tests. However, research using a DBB to test the rotary axes of five-axis machine tools simply, quickly and effectively is scarce. In this paper, a method having two steps to identify the imprecision of the rotary axes caused by the position-independent geometric errors (PIGEs) is presented for a tilting rotary type five-axis machine tool using a DBB. The first step is designed to evaluate two rotary axes with one setup. Its advantage of fast diagnosis effectively reduces the machine down time, and thus can be employed as a quick testing approach of the machine tool. However, if some of the diagnosed errors fall outside their tolerances, a more accurate but slower check needs to be carried out due to the limitation of the first step. The second step aims to test the two rotary axes separately, each in two sub-steps. By means of varying the position of the pivot, the A- and C-axes can be tested individually. Both steps are performed with only one axis moving, thus simplifying the error analysis. Implementation of the proposed methods was carried out on a Hermle C600U five-axis machine tool. To show the validity of the method, the identified PIGEs are compensated for in each step, which suggests that the first step can be used as a fast and preliminary indication of a five-axis machine tool’s performance, whilst the second can be carried out if a more thorough evaluation is needed.


2011 ◽  
Vol 201-203 ◽  
pp. 133-137
Author(s):  
Chen Hua She ◽  
Kai Sheng Li ◽  
Zhi Hao Zheng

Five-axis machining, an important processes in precision manufacturing, has been used in defense, aerospace and consumer product industries. Many combinations can be synthesized to generate various five-axis machine tool configurations, in which the linear and rotary axes are normally orthogonal. Since five-axis NC data can only be applied to a specific configuration, the portability of the NC data is inevitably limited. A special purpose five-axis machine with a nonorthogonal linear axis configuration is investigated in this research. The complete analytical equations for NC data are obtained using the homogeneous coordinate transformation matrix and inverse kinematics. A window-based postprocessor system written by Borland C++ Builder was developed according to the proposed algorithm. A roller gear cam was adopted as an example to generate the NC code using the proposed postprocessor system. A trail-cut experiment conducted with this special purpose machine tool confirms the effectiveness of the proposed methodology.


2012 ◽  
Vol 6 (2) ◽  
pp. 180-187 ◽  
Author(s):  
Yukitoshi Ihara ◽  

A ball bar is a very convenient device for measuring the motion accuracy of machine tools. Some trials have also been done for measuring motion accuracy of industrial robots. Nowadays, multi-axis machines such as five-axis machining centers are very popular, and therefore, there is increased demand for checking their accuracy. This paper introduces an idea for checking the motion accuracy of five-axis machining centers and diagnosing error sources by reviewing trial measurements on articulated industrial robots. There are two problems. The first problem is that the ball bar can measure only distances, and the second problem is that the ball bar is a linear device and therefore not suitable for the rotary axis motion of 5-axis machines and articulated robots. Finally, the test conditions for the measurement of the motion accuracy of a machine tool showing conical motion, by using the ball bar and ISO/DIS 10791-6 (which is currently being edited) are reviewed and verified.


2013 ◽  
Vol 284-287 ◽  
pp. 562-566
Author(s):  
Yi Ming Lee ◽  
Kuei Shu Hsu ◽  
Shyue Bin Chang

The main purpose of this paper is to study the mechanisms of a new computer model of five-axis CNC machine tool developing process, including the kinematics of the spindle for both vertically and horizontally and its build process by simulation. According to the better process, let designer or user understands the characteristics of these particular machine tools. Through the computer simulation and graphic animation, users can observe the relationships of each movement on these new model multi-axis CNC machine tools. During the process of kinematics simulation, the forward and inverse kinematics are discussed and verified by simulation of software ADAMS. A control interface using Matlab is proposed to realize the motion commands and coordinate the kinematics. The simulated prototype demonstrates the feasibility in design through kinematics analysis of the new five axis CNC model in replace of conventional real prototype machine design.


2013 ◽  
Vol 284-287 ◽  
pp. 1924-1928 ◽  
Author(s):  
Hsin Yu Cheng ◽  
Yung Chou Kao

Generally, the NC format is the description for the positioning and/or the movement of its linear and rotary axes. As the multi-axis machine tools have a variety of configurations, their NC codes are not exchangeable. This issue leads to some inconvenience and confounding in the manufacturing processing schedule. Furthermore, when the specifications of tool such as length, diameter or shape are reset, the NC program must be regenerated accordingly. That is to say, the exchangeability of NC program among different five-axis machine configurations is an important issue in making better usage of industrial five-axis machine tools for efficient applications. An APT program records the tool path, tool vector and cutting information, etc. In particular, the recent development of APT format can provide the capability recording the motion posture of the tool such as the tool orientation, the position and its normal vector of the tool contact point. Therefore, it can solve the problems of the exchangeability for the different machine tools as well as the online resetting of tool specifications, even the tool posture. In this paper, a new method was proposed to interpret the APT code into tool movement data including toolpath, location, tool orientation, the contact point and its contact vector, etc., which can be applied to the conversion of different NC codes, or be connected to the controller of the machine tool so as to proceed the interpolation calculation for directly machining control. Moreover, the application scope can be extended to the verification of machining and to drive a virtual machine tool for previewing. Since the APT format varies according to different CAD/CAM systems, a common intermediate interchange standard (CMIS) was proposed, designed and verified in this paper as a feasible solution for the exchangeability of different APT formats. The process of the proposed method includes interpreting a variety of APT program into a common standard format, and then transforming this intermediate standard code into various NC programs for the corresponding machine configurations. An example was used to demonstrate how to convert an APT generated by CATIA software into intermediate code for a Table-Table five-axis machine tool with two rotary axes attached on table (XYZAC configuration). As the APT contains the definition of inclined plane, so the homogeneous coordinate transformation was adopted to transform the coordinate system of the inclined plane into the work coordinate system; it was further transformed into the corresponding NC program via an inverse kinematics transformation. This example has shown the feasibility of the method proposed. Moreover, the research can be applied not only to the exchangeability of different APT format but also to the other related applications such as the verification of machining error and the drive of virtual machine tool.


Author(s):  
J. D. Hwang ◽  
H. C. Jung ◽  
K. B. Park ◽  
Y. G. Jung

This paper deals with the development of a practical postprocessor for 5-axis machine tools. Recently, special 5-axis machine tools with non-orthogonal rotary axes as well as typical 5-axis machine tools with orthogonal rotary axes have been introduced. In the present work, the general equations of NC data for 5-axis configurations with non-orthogonal rotary axes are exactly expressed by the inverse kinematics, and a Windows-based postprocessor written in Visual Basic was developed according to the proposed algorithm. The developed postprocessor is a general system suitable for all kinds of 5-axis machine tools not only with orthogonal rotary axes but also with non-orthogonal rotary axes, thereby expanding the range of application of the developed postprocessor. In addition, through implementation of the developed postprocessor and verification by a cutting simulation and machining experiment, the effectiveness of the proposed algorithm was confirmed. Compatibility was improved by allowing exchange of data formats such as RTCP controlled NC data, Vector post NC data, and POF CL data, and convenience was increased by adding the function of work-piece origin offset. Consequently, a practical post-processor for 5-axis machining has been developed.


Sign in / Sign up

Export Citation Format

Share Document