A Universal Postprocessor of General Table-Tilting Type of Five-Axis Machine Tools Without Rotational Tool Center Point Function for Actual NC Code Generation

2018 ◽  
Author(s):  
Guoqiang Fu ◽  
Hongli Gao ◽  
Tengda Gu

The postprocessor is essential for machining with five-axis machine tools. This paper develops one universal postprocessor for table-tilting type of five-axis machine tools without rotational tool center point (RTCP) function. Firstly, positions of two rotary axes and the workpiece in the machine coordinate system (MCS) are introduced into the kinematic chain of the five-axis machine tools. The uniform product of exponential (POE) formula of the tool relative to the workpiece is established to obtain the universal forward kinematics. On this basis, the postprocessor of table-tilting type of five-axis machine tools is developed. The calculation of rotation angles of rotation axes is proposed in details, including the calculation of double solutions, the determination of rotation angles of C-axis and the selection principle of the shortest path of rotation angles. Movements of linear axes are calculated with rotation angles of rotary axes. The generated movements of all axes are actual positions of all axes relative to their zero positions, which can be used for machining directly. The postprocessor does not rely on RTCP function with positions of rotary axes and the workpiece in MCS. Finally, cutting test in VERICUT and real cutting experiments on SmartCNC500_DRTD five-axis machine tool are carried out to verify the effectiveness of the proposed postprocessor.

2011 ◽  
Vol 464 ◽  
pp. 254-259 ◽  
Author(s):  
Shu Tian Fan ◽  
Wei Ping Yang ◽  
Chao Jie Dong

Because of the rotate kinematics, the machining of 5-axis brings up the non-linear error. The RTCP (Rotation Tool Center Point) function can always make the interpolated point on the programming track by a real-time linear compensation of CNC system for motion of the rotary axes. Based on detailed analysis of the kinematics principle of 5-axis machine with dual rotary tables, a new design of interpolated algorithm integrated with RTCP function is presented which is simulated in MATLAB, and the result indicates that the algorithm can reduce the non-linear error effectively.


2016 ◽  
Vol 693 ◽  
pp. 1591-1597
Author(s):  
Xiang Xiang Zou ◽  
Yan Yu Ding ◽  
Tai Yong Wang ◽  
Zhen Sang ◽  
He Nan Xu

To solve the problem which current research of RTCP function is limited to high-grade CNC system. Based on limited computational resources of the embedded CNC system, analyzes and modeling calculates RTCP function of CA double swing structure, and points out the offset distance is only related to the chord length corresponding to the arc length that the rotating radius crosses, and obtains the calculation formula of compensation. Finally, gives the implementing flow chart of the RTCP algorithm for low-cost embedded CNC system.


2019 ◽  
Vol 141 (11) ◽  
Author(s):  
Song Gao ◽  
Jihong Chen ◽  
Shusheng Liu ◽  
Xiukun Yuan ◽  
Pengcheng Hu ◽  
...  

Abstract Due to their superior machining quality, efficiency, and availability, five-axis machine tools are important for the manufacturing of complicated parts of freeform surfaces. In this study, a new type of the five-axis machine tool was designed that is composed of four rotary axes as well as one translational axis. Given the structure of the proposed machine tool, an inverse kinematics analysis was conducted analytically, and a set of methods was then proposed to address the issues in the kinematic analysis, e.g., the singularity and multi-solution problems. Compared with traditional five-axis machine tools, which are typically composed of three linear axes and two rotary axes, the proposed machine tool exhibited better kinematic performance with machining parts with hub features, such as impellers, which was validated by simulations and real cuttings.


2014 ◽  
Vol 625 ◽  
pp. 402-407
Author(s):  
Jeng Nan Lee ◽  
Chen Hua She ◽  
Chyouh Wu Brian Huang ◽  
Hung Shyong Chen ◽  
Huang Kuang Kung

Owing to NAS 979 describes a cutting test for five-axis machine center with a universal spindle, several conditions for C-type machine tool have not been defined yet. This paper proposes a cutting test for a non-orthogonal swivel head and a rotary table type five-axis machine tool (C type) to evaluate its performance. The workpiece consists of 10 machining features. These features include the multi-axis simultaneous machining patterns and the positioning machining patterns. The flat end mill cutters are applied in each machining feature. Cutter location data for the test piece was generated using a commercial CAD/CAM system (UG) and converted to five-axis NC code using a postprocessor created in UG Post Builder. This UG postprocessor is verified through the developed postprocessor utilizing the modified D-H notation. It is also verified using VERICUT® solid cutting simulation software demonstrated the veracity of the generated five-axis NC code. The machining test is applicable for a variety of five-axis machine tool configurations.


Sign in / Sign up

Export Citation Format

Share Document