scholarly journals Indirect cutting tool wear classification using deep learning and chip colour analysis

2020 ◽  
Vol 111 (3-4) ◽  
pp. 1099-1114
Author(s):  
Luca Pagani ◽  
Paolo Parenti ◽  
Salvatore Cataldo ◽  
Paul J. Scott ◽  
Massimiliano Annoni

Abstract In the growing Industry 4.0 market, there is strong need to implement automatic inspection methods to support manufacturing processes. Tool wear in turning is one of the biggest concerns that most expert operators are able to indirectly infer through the analysis of the removed chips. Automatising this operation would enable developing more efficient cutting processes that turns in easier process planning management toward the Zero Defect Manufacturing paradigm. This paper presents a deep learning approach, based on image processing applied to turning chips for indirectly identifying tool wear levels. The procedure extracts different indicators from the RGB and HSV image channels and instructs a neural network for classifying the chips, based on tool state conditions. Images were collected with a high-resolution digital camera during an experimental cutting campaign involving tool wear analysis with direct microscope imaging. The sensitivity analysis confirmed that the most sensible image channels are the hue value H that were used to teach the network, leading to performances in the range of 95 of proper classification. The feasibility of the deep learning approach for indirectly understanding the tool wear from the chip colour characterisation is confirmed. However, due to the big effects on chip colours of variables as the workpiece material and cutting process parameters, the applicability is limited to stable production flows. An industrial implementation can be foreseen by populating proper large databases and by implementing real-time chip segmentation analysis.

2018 ◽  
Vol 6 (3) ◽  
pp. 122-126
Author(s):  
Mohammed Ibrahim Khan ◽  
◽  
Akansha Singh ◽  
Anand Handa ◽  
◽  
...  

2020 ◽  
Vol 17 (3) ◽  
pp. 299-305 ◽  
Author(s):  
Riaz Ahmad ◽  
Saeeda Naz ◽  
Muhammad Afzal ◽  
Sheikh Rashid ◽  
Marcus Liwicki ◽  
...  

This paper presents a deep learning benchmark on a complex dataset known as KFUPM Handwritten Arabic TexT (KHATT). The KHATT data-set consists of complex patterns of handwritten Arabic text-lines. This paper contributes mainly in three aspects i.e., (1) pre-processing, (2) deep learning based approach, and (3) data-augmentation. The pre-processing step includes pruning of white extra spaces plus de-skewing the skewed text-lines. We deploy a deep learning approach based on Multi-Dimensional Long Short-Term Memory (MDLSTM) networks and Connectionist Temporal Classification (CTC). The MDLSTM has the advantage of scanning the Arabic text-lines in all directions (horizontal and vertical) to cover dots, diacritics, strokes and fine inflammation. The data-augmentation with a deep learning approach proves to achieve better and promising improvement in results by gaining 80.02% Character Recognition (CR) over 75.08% as baseline.


2018 ◽  
Vol 15 (1) ◽  
pp. 6-28 ◽  
Author(s):  
Javier Pérez-Sianes ◽  
Horacio Pérez-Sánchez ◽  
Fernando Díaz

Background: Automated compound testing is currently the de facto standard method for drug screening, but it has not brought the great increase in the number of new drugs that was expected. Computer- aided compounds search, known as Virtual Screening, has shown the benefits to this field as a complement or even alternative to the robotic drug discovery. There are different methods and approaches to address this problem and most of them are often included in one of the main screening strategies. Machine learning, however, has established itself as a virtual screening methodology in its own right and it may grow in popularity with the new trends on artificial intelligence. Objective: This paper will attempt to provide a comprehensive and structured review that collects the most important proposals made so far in this area of research. Particular attention is given to some recent developments carried out in the machine learning field: the deep learning approach, which is pointed out as a future key player in the virtual screening landscape.


Sign in / Sign up

Export Citation Format

Share Document