cutting processes
Recently Published Documents


TOTAL DOCUMENTS

574
(FIVE YEARS 135)

H-INDEX

27
(FIVE YEARS 4)

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 412
Author(s):  
Elisa Fracchia ◽  
Jana Bidulská ◽  
Róbert Bidulský ◽  
Marco Actis Grande

In this work, AA1070 aluminium alloy sheets are joined using TIG and MIG welding after three different edge preparations. Shearing, water jet and plasma-cut processes were used to cut sheets, subsequently welded using ER5356 and ER4043 filler metals for TIG and MIG, respectively. Mechanical properties of the obtained sheets were assessed through tensile tests obtaining a relation between sheet preparation and welding tightness. Micro-hardness measures were performed to evaluate the effects of both welding and cutting processes on the micro-hardness of the alloy, highlighting that TIG welding gives rise to inhomogeneous micro-hardness behaviour. After tensile tests, surface fractures were observed employing scanning electron microscopy to highlight the relation between tensile properties and edge preparations. Fractures show severe oxidation in the water jet cut specimens, ductile fractures and gas porosities.


2022 ◽  
Vol 16 (1) ◽  
pp. 3-4
Author(s):  
Takazo Yamada ◽  
Kazuhito Ohashi ◽  
Hirofumi Suzuki ◽  
Akinori Yui

Demand for the high-precision and high-efficiency machining of hard ceramics, such as silicon carbide for semiconductors and hardened steel for molding dies, has significantly increased for optical and medical devices as well as for powered devices in automobiles. Certain types of hard metals can be machined by deterministic precision-cutting processes. However, hard and brittle ceramics, hardened steel for molds, and semiconductor materials have to be machined using precision abrasive technologies, such as grinding, polishing, and ultrasonic vibration technologies that use diamond super abrasives. The machining of high-precision components and their molds/dies using abrasive processes is very difficult due to their complex and nondeterministic natures as well as their complex textured surfaces. Furthermore, the development of new cutting-edge tools or machining methods and the active use of physicochemical phenomena are key to the development of high-precision and high-efficiency machining. This special issue features 11 research papers on the most recent advances in precision abrasive technologies. These papers cover the following topics: - Characteristics of abrasive grains in creep-feed grinding - Quantitative evaluation of the surface profiles of grinding wheels - ELID grinding using elastic wheels - Nano-topographies of ground surfaces - Novel grinding wheels - Grinding characteristics of turbine blade materials - Polishing mechanisms - Polishing technologies using magnetic fluid slurries - Application of ultrasonic vibration machining - Turning and rotary cutting technologies This issue is expected to help its readers to understand recent developments in abrasive technologies and to lead to further research. We deeply appreciate the careful work of all the authors, and we thank the reviewers for their incisive efforts.


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 289
Author(s):  
Oleg V. Ageev ◽  
Andrzej Dowgiałło ◽  
Monika Sterczyńska ◽  
Joanna Piepiórka-Stepuk ◽  
Natalia V. Samojlova ◽  
...  

Mathematical models for predicting the resistance forces that are developed during the inclined and sliding cutting of food materials have been developed. The dependence of the actual cutting angle on the angle of inclination and sliding speed of the cutting edge at various sharpening angles have been investigated. For the inclined cutting mode, the dependence of the useful resistance force on the cutting speed has been determined at various angles of inclination of the cutting edge and designed sharpening angles. For the sliding cutting mode, the dependence of the useful resistance force on the feeding speed has been demonstrated at various sliding speed values and designed knife sharpening angles. The dependence of the transformed dimensionless sharpness of the knife on the angle of inclination of the cutting edge and the sliding speed has been established for different constructional sharpness values of the knife. The results of the study indicate that the useful resistance force is significantly reduced during the inclined and sliding cutting processes when compared with the normal cutting process, and a change in the pattern of fiber destruction, which significantly increases the cutting efficiency of cutting tools, is obtained.


2021 ◽  
Vol 13 (3) ◽  
pp. 134-142
Author(s):  
Marek Płaczek ◽  
◽  
Paulina Fabisz ◽  

The paper presents a comparative analysis of the technique of cutting materials such as water jet cutting and laser cutting. The tests were carried out while cutting plastic elements, such as: PMMA, HIPS and ABS. To compare the analysed cutting methods, it was necessary to limit the type of material to be cut to the selected plastics due to the limited thickness range of the samples cut with the use of the laser used for the tests. The workpiece was designed in AutoCAD. The geometry was designed in such a way that it was possible to compare the accuracy of cutting both straight sections, curves and holes using the cutting techniques tested. The roughness of the treated surfaces (edges of the samples) was also analysed. A roughness gauge was used to test the edges. The obtained research results were compiled and analysed to determine the optimal technology and parameters of cutting processes for individual types of selected materials and shapes. As it was shown, the wrong selection of the cutting technology in relation to the processed material or the wrong selection of machining parameters may lead to the destruction of the detail being made and incur significant costs.


2021 ◽  
Author(s):  
Hui Liu ◽  
Markus Meurer ◽  
Daniel Schraknepper ◽  
Thomas Bergs

Abstract Cutting fluids are an important part of today's metal cutting processes, especially when machining aerospace alloys. They offer the possibility to extend tool life and improve cutting performance. However, the equipment and handling of cutting fluids also raises manufacturing costs. To reduce the negative impact of the high cost of cutting fluids, cooling systems and strategies are constantly being optimized. In most existing works, the influences of different cooling strategies on the relevant process parameters, such as tool wear, cutting forces, chip breakage, etc., are empirically investigated. Due to the limitations of experimental methods, analysis and modeling of the working mechanism has so far only been carried out at a relatively abstract level. For a better understanding of the mechanism of cutting fluids, a thermal coupled two-dimensional simulation approach for the orthogonal cutting process was developed in this work. This approach is based on the Coupled Eulerian Lagrangian (CEL) method and provides a detailed investigation of the cutting fluid’s impact on chip formation and tool temperature. For model validation, cutting tests were conducted on a broaching machine. The simulation resolved the fluid behavior in the cutting area and showed the distribution of convective cooling on the tool surface. This work demonstrates the potential of CEL based cutting fluid simulation, but also pointed out the shortcomings of this method.


2021 ◽  
pp. 181-252
Author(s):  
B. Sredanović ◽  
Đ. Čiča ◽  
D. Kramar

2021 ◽  
Author(s):  
Asma Manai

Welding is a joining process that leads to considerable change in the local material and the formation of welding residual stresses (RS). Welding residual stresses can be compressive (beneficial for the fatigue life) or tensile (harmful for the fatigue life). In this chapter, a probabilistic analysis of residual stresses distribution posterior to welding processes is carried out. Several researchers stated that the type of the introduced stresses either compressive or tensile depends on several factors. Some of these factors are listed in this chapter. Welding of mega-structures is carried out in the workshops, then a cutting process takes place to construct the exact size of the structural components. This cutting process has a significant effect on the weld residual stresses re-distribution. A study of the re-distribution of the weld residual stress after cutting was performed. It was found that independent of the weld seam length, the residual stresses re-distributed up to 60 % of the weld seam length.


Wood Research ◽  
2021 ◽  
Vol 66 (5) ◽  
pp. 789-805
Author(s):  
MATEUSZ KUKLA ◽  
ŁUKASZ WARGUŁA ◽  
ALEKSANDRA BISZCZANIK

In order to improve the power selection of the drive unit for the shredding machines,theauthors determine the values of friction coefficients used in the cutting force models. These values consider the friction between steel and such wood-based materials as chipboard, MDF and OSB. The tests concern laminated and non-laminated external surfaces and surfaces subjected to cutting processes. The value of the coefficient of friction for the tested materials is in the range: for the static coefficient of friction 0.77-0.33, and for the kinetic coefficient of friction 0.68-0.25. The highest values of the static and kinematic coefficient of friction were recorded for MDF (non-laminated external surface) and they were equal respectively: 0.77 and 0.68. In turn, thesmallest values of the discussed coefficients were recorded for chipboard (laminated external wood-base surface), which were at the level of 0.33 and 0.25, resp.


Sign in / Sign up

Export Citation Format

Share Document